亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Collaborative Filtering (CF) has emerged as one of the most prominent implementation strategies for building recommender systems. The key idea is to exploit the usage patterns of individuals to generate personalized recommendations. CF techniques, especially for newly launched platforms, often face a critical issue known as the data sparsity problem, which greatly limits their performance. Several approaches have been proposed in the literature to tackle the problem of data sparsity, among which cross-domain collaborative filtering (CDCF) has gained significant attention in the recent past. In order to compensate for the scarcity of available feedback in a target domain, the CDCF approach makes use of information available in other auxiliary domains. Most of the traditional CDCF approach aim is to find a common set of entities (users or items) across the domains and then use them as a bridge for knowledge transfer. However, most real-world datasets are collected from different domains, so they often lack information about anchor points or reference information for entity alignment. In this paper, we propose a domain adaptation technique to align the embeddings of users and items across the two domains. Our approach first exploits the available textual and visual information to independently learn a multi-view latent representation for each user and item in the auxiliary and target domains. The different representations of a user or item are then fused to generate the corresponding unified representation. A domain classifier is then trained to learn the embedding for the domain alignment by fixing the unified features as the anchor points. Experiments on two publicly benchmark datasets indicate the effectiveness of our proposed approach.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Continuity · Performer · Integration · SimPLe ·
2023 年 8 月 18 日

We describe the construction and evaluation of a part-of-speech tagger for Yiddish. This is the first step in a larger project of automatically assigning part-of-speech tags and syntactic structure to Yiddish text for purposes of linguistic research. We combine two resources for the current work - an 80K-word subset of the Penn Parsed Corpus of Historical Yiddish (PPCHY) and 650 million words of OCR'd Yiddish text from the Yiddish Book Center (YBC). Yiddish orthography in the YBC corpus has many spelling inconsistencies, and we present some evidence that even simple non-contextualized embeddings trained on YBC are able to capture the relationships among spelling variants without the need to first "standardize" the corpus. We also use YBC for continued pretraining of contexualized embeddings, which are then integrated into a tagger model trained and evaluated on the PPCHY. We evaluate the tagger performance on a 10-fold cross-validation split, showing that the use of the YBC text for the contextualized embeddings improves tagger performance. We conclude by discussing some next steps, including the need for additional annotated training and test data.

Conventional beamforming with fixed-position antenna (FPA) arrays has a fundamental trade-off between maximizing the signal power (array gain) over a desired direction and simultaneously minimizing the interference power over undesired directions. To overcome this limitation, this letter investigates the movable antenna (MA) array enhanced beamforming by exploiting the new degree of freedom (DoF) via antenna position optimization, in addition to the design of antenna weights. We show that by jointly optimizing the antenna positions vector (APV) and antenna weights vector (AWV) of a linear MA array, the full array gain can be achieved over the desired direction while null steering can be realized over all undesired directions, under certain numbers of MAs and null-steering directions. The optimal solutions for AWV and APV are derived in closed form, which reveal that the optimal AWV for MA arrays requires only the signal phase adjustment with a fixed amplitude. Numerical results validate our analytical solutions for MA array beamforming and show their superior performance to the conventional beamforming techniques with FPA arrays.

Learned image compression methods have shown superior rate-distortion performance and remarkable potential compared to traditional compression methods. Most existing learned approaches use stacked convolution or window-based self-attention for transform coding, which aggregate spatial information in a fixed range. In this paper, we focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding. The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform. With the adaptive aggregation strategy and the sharing weights mechanism, our method can achieve promising transform capability with acceptable model complexity. Besides, according to the recent progress of entropy model, we define a generalized coarse-to-fine entropy model, considering the coarse global context, the channel-wise, and the spatial context. Based on it, we introduce dynamic kernel in hyper-prior to generate more expressive global context. Furthermore, we propose an asymmetric spatial-channel entropy model according to the investigation of the spatial characteristics of the grouped latents. The asymmetric entropy model aims to reduce statistical redundancy while maintaining coding efficiency. Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.

We present an online post-hoc calibration method, called Online Platt Scaling (OPS), which combines the Platt scaling technique with online logistic regression. We demonstrate that OPS smoothly adapts between i.i.d. and non-i.i.d. settings with distribution drift. Further, in scenarios where the best Platt scaling model is itself miscalibrated, we enhance OPS by incorporating a recently developed technique called calibeating to make it more robust. Theoretically, our resulting OPS+calibeating method is guaranteed to be calibrated for adversarial outcome sequences. Empirically, it is effective on a range of synthetic and real-world datasets, with and without distribution drifts, achieving superior performance without hyperparameter tuning. Finally, we extend all OPS ideas to the beta scaling method.

We propose an agglomerative Transformer (AGER) that enables Transformer-based human-object interaction (HOI) detectors to flexibly exploit extra instance-level cues in a single-stage and end-to-end manner for the first time. AGER acquires instance tokens by dynamically clustering patch tokens and aligning cluster centers to instances with textual guidance, thus enjoying two benefits: 1) Integrality: each instance token is encouraged to contain all discriminative feature regions of an instance, which demonstrates a significant improvement in the extraction of different instance-level cues and subsequently leads to a new state-of-the-art performance of HOI detection with 36.75 mAP on HICO-Det. 2) Efficiency: the dynamical clustering mechanism allows AGER to generate instance tokens jointly with the feature learning of the Transformer encoder, eliminating the need of an additional object detector or instance decoder in prior methods, thus allowing the extraction of desirable extra cues for HOI detection in a single-stage and end-to-end pipeline. Concretely, AGER reduces GFLOPs by 8.5% and improves FPS by 36%, even compared to a vanilla DETR-like pipeline without extra cue extraction.

Deep neural networks (DNNs) are becoming increasingly important components of software, and are considered the state-of-the-art solution for a number of problems, such as image recognition. However, DNNs are far from infallible, and incorrect behavior of DNNs can have disastrous real-world consequences. This paper addresses the problem of architecture-preserving V-polytope provable repair of DNNs. A V-polytope defines a convex bounded polytope using its vertex representation. V-polytope provable repair guarantees that the repaired DNN satisfies the given specification on the infinite set of points in the given V-polytope. An architecture-preserving repair only modifies the parameters of the DNN, without modifying its architecture. The repair has the flexibility to modify multiple layers of the DNN, and runs in polynomial time. It supports DNNs with activation functions that have some linear pieces, as well as fully-connected, convolutional, pooling and residual layers. To the best our knowledge, this is the first provable repair approach that has all of these features. We implement our approach in a tool called APRNN. Using MNIST, ImageNet, and ACAS Xu DNNs, we show that it has better efficiency, scalability, and generalization compared to PRDNN and REASSURE, prior provable repair methods that are not architecture preserving.

We propose a supervised principal component regression method for relating functional responses with high dimensional predictors. Unlike the conventional principal component analysis, the proposed method builds on a newly defined expected integrated residual sum of squares, which directly makes use of the association between the functional response and the predictors. Minimizing the integrated residual sum of squares gives the supervised principal components, which is equivalent to solving a sequence of nonconvex generalized Rayleigh quotient optimization problems. We reformulate the nonconvex optimization problems into a simultaneous linear regression with a sparse penalty to deal with high dimensional predictors. Theoretically, we show that the reformulated regression problem can recover the same supervised principal subspace under certain conditions. Statistically, we establish non-asymptotic error bounds for the proposed estimators when the covariate covariance is bandable. We demonstrate the advantages of the proposed method through numerical experiments and an application to the Human Connectome Project fMRI data.

Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).

This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in HR@10 over state-of-the-art baseline methods.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

北京阿比特科技有限公司