In this two-part paper, we investigate the channel estimation for massive multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. In Part I, we revisit the information geometry approach (IGA) for massive MIMO-OFDM channel estimation. By using the constant magnitude property of the entries of the measurement matrix in the massive MIMO-OFDM channel estimation and the asymptotic analysis, we find that the second-order natural parameters of the distributions on all the auxiliary manifolds are equivalent to each other at each iteration of IGA, and the first-order natural parameters of the distributions on all the auxiliary manifolds are asymptotically equivalent to each other at the fixed point of IGA. Motivated by these results, we simplify the iterative process of IGA and propose a simplified IGA for massive MIMO-OFDM channel estimation. It is proved that at the fixed point, the a posteriori mean obtained by the simplified IGA is asymptotically optimal. The simplified IGA allows efficient implementation with fast Fourier transformation (FFT). Simulations confirm that the simplified IGA can achieve near the optimal performance with low complexity in a limited number of iterations.
This note provides a significantly simpler and shorter proof of our sample complexity guarantee for solving the low rank column-wise sensing problem using the Alternating Gradient Descent (GD) and Minimization (AltGDmin) algorithm. AltGDmin was developed and analyzed for solving this problem in our recent work. We also provide an improved guarantee.
Graphs are widely used to encapsulate a variety of data formats, but real-world networks often involve complex node relations beyond only being pairwise. While hypergraphs and hierarchical graphs have been developed and employed to account for the complex node relations, they cannot fully represent these complexities in practice. Additionally, though many Graph Neural Networks (GNNs) have been proposed for representation learning on higher-order graphs, they are usually only evaluated on simple graph datasets. Therefore, there is a need for a unified modelling of higher-order graphs, and a collection of comprehensive datasets with an accessible evaluation framework to fully understand the performance of these algorithms on complex graphs. In this paper, we introduce the concept of hybrid graphs, a unified definition for higher-order graphs, and present the Hybrid Graph Benchmark (HGB). HGB contains 23 real-world hybrid graph datasets across various domains such as biology, social media, and e-commerce. Furthermore, we provide an extensible evaluation framework and a supporting codebase to facilitate the training and evaluation of GNNs on HGB. Our empirical study of existing GNNs on HGB reveals various research opportunities and gaps, including (1) evaluating the actual performance improvement of hypergraph GNNs over simple graph GNNs; (2) comparing the impact of different sampling strategies on hybrid graph learning methods; and (3) exploring ways to integrate simple graph and hypergraph information. We make our source code and full datasets publicly available at //zehui127.github.io/hybrid-graph-benchmark/.
We propose a new joint mean and correlation regression model for correlated multivariate discrete responses, that simultaneously regresses the mean of each response against a set of covariates, and the correlations between responses against a set of similarity/distance measures. A set of joint estimating equations are formulated to construct an estimator of both the mean regression coefficients and the correlation regression parameters. Under a general setting where the number of responses can tend to infinity, the joint estimator is demonstrated to be consistent and asymptotically normally distributed, with differing rates of convergence due to the mean regression coefficients being heterogeneous across responses. An iterative estimation procedure is developed to obtain parameter estimates in the required, constrained parameter space. We apply the proposed model to a multivariate abundance dataset comprising overdispersed counts of 38 Carabidae ground beetle species sampled throughout Scotland, along with information about the environmental conditions of each site and the traits of each species. Results show in particular that the relationships between the mean abundances of various beetle species and environmental covariates are different and that beetle total length has statistically important effect in driving the correlations between the species. Simulations demonstrate the strong finite sample performance of the proposed estimator in terms of point estimation and inference.
In this paper, we unveil a fundamental side channel in Wi-Fi networks, specifically the observable frame size, which can be exploited by attackers to conduct TCP hijacking attacks. Despite the various security mechanisms (e.g., WEP and WPA2/WPA3) implemented to safeguard Wi-Fi networks, our study reveals that an off path attacker can still extract sufficient information from the frame size side channel to hijack the victim's TCP connection. Our side channel attack is based on two significant findings: (i) response packets (e.g., ACK and RST) generated by TCP receivers vary in size, and (ii) the encrypted frames containing these response packets have consistent and distinguishable sizes. By observing the size of the victim's encrypted frames, the attacker can detect and hijack the victim's TCP connections. We validate the effectiveness of this side channel attack through two case studies, i.e., SSH DoS and web traffic manipulation. Furthermore, we conduct extensive measurements to evaluate the impact of our attack on real-world Wi-Fi networks. We test 30 popular wireless routers from 9 well-known vendors, and none of these routers can protect victims from our attack. Also, we implement our attack in 80 real-world Wi-Fi networks and successfully hijack the victim's TCP connections in 69 (86%) evaluated Wi-Fi networks. We have responsibly disclosed the vulnerability to the Wi-Fi Alliance and proposed several mitigation strategies to address this issue.
In this study, we have shown autonomous long-term prediction with a spintronic physical reservoir. Due to the short-term memory property of the magnetization dynamics, non-linearity arises in the reservoir states which could be used for long-term prediction tasks using simple linear regression for online training. During the prediction stage, the output is directly fed to the input of the reservoir for autonomous prediction. We employ our proposed reservoir for the modeling of the chaotic time series such as Mackey-Glass and dynamic time-series data, such as household building energy loads. Since only the last layer of a RC needs to be trained with linear regression, it is well suited for learning in real time on edge devices. Here we show that a skyrmion based magnetic tunnel junction can potentially be used as a prototypical RC but any nanomagnetic magnetic tunnel junction with nonlinear magnetization behavior can implement such a RC. By comparing our spintronic physical RC approach with energy load forecasting algorithms, such as LSTMs and RNNs, we conclude that the proposed framework presents good performance in achieving high predictions accuracy, while also requiring low memory and energy both of which are at a premium in hardware resource and power constrained edge applications. Further, the proposed approach is shown to require very small training datasets and at the same time being at least 16X energy efficient compared to the sequence to sequence LSTM for accurate household load predictions.
In this study, we develop a multiple-generative agent system to simulate community decision-making for the redevelopment of Kendall Square's Volpe building. Drawing on interviews with local stakeholders, our simulations incorporated varying degrees of communication, demographic data, and life values in the agent prompts. The results revealed that communication among agents improved collective reasoning, while the inclusion of demographic and life values led to more distinct opinions. These findings highlight the potential application of AI in understanding complex social interactions and decision-making processes, offering valuable insights for urban planning and community engagement in diverse settings like Kendall Square.
The increasing significance of large language and multimodal models in societal information processing has ignited debates on social safety and ethics. However, few studies have approached the analysis of these limitations from the comprehensive perspective of human and artificial intelligence system interactions. This study investigates biases and preferences when humans and large models are used as key links in communication. To achieve this, we design a multimodal dataset and three different experiments to evaluate generative models in their roles as producers and disseminators of information. Our main findings highlight that synthesized information is more likely to be incorporated into model training datasets and messaging than human-generated information. Additionally, large models, when acting as transmitters of information, tend to modify and lose specific content selectively. Conceptually, we present two realistic models of autophagic ("self-consumption") loops to account for the suppression of human-generated information in the exchange of information between humans and AI systems. We generalize the declining diversity of social information and the bottleneck in model performance caused by the above trends to the local optima of large models.
In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.