Black box optimisation of an unknown function from expensive and noisy evaluations is a ubiquitous problem in machine learning, academic research and industrial production. An abstraction of the problem can be formulated as a kernel based bandit problem (also known as Bayesian optimisation), where a learner aims at optimising a kernelized function through sequential noisy observations. The existing work predominantly assumes feedback is immediately available; an assumption which fails in many real world situations, including recommendation systems, clinical trials and hyperparameter tuning. We consider a kernel bandit problem under stochastically delayed feedback, and propose an algorithm with $\tilde{\mathcal{O}}(\sqrt{\Gamma_k(T)T}+\mathbb{E}[\tau])$ regret, where $T$ is the number of time steps, $\Gamma_k(T)$ is the maximum information gain of the kernel with $T$ observations, and $\tau$ is the delay random variable. This represents a significant improvement over the state of the art regret bound of $\tilde{\mathcal{O}}(\Gamma_k(T)\sqrt{T}+\mathbb{E}[\tau]\Gamma_k(T))$ reported in Verma et al. (2022). In particular, for very non-smooth kernels, the information gain grows almost linearly in time, trivializing the existing results. We also validate our theoretical results with simulations.
Past work exploring adversarial vulnerability have focused on situations where an adversary can perturb all dimensions of model input. On the other hand, a range of recent works consider the case where either (i) an adversary can perturb a limited number of input parameters or (ii) a subset of modalities in a multimodal problem. In both of these cases, adversarial examples are effectively constrained to a subspace $V$ in the ambient input space $\mathcal{X}$. Motivated by this, in this work we investigate how adversarial vulnerability depends on $\dim(V)$. In particular, we show that the adversarial success of standard PGD attacks with $\ell^p$ norm constraints behaves like a monotonically increasing function of $\epsilon (\frac{\dim(V)}{\dim \mathcal{X}})^{\frac{1}{q}}$ where $\epsilon$ is the perturbation budget and $\frac{1}{p} + \frac{1}{q} =1$, provided $p > 1$ (the case $p=1$ presents additional subtleties which we analyze in some detail). This functional form can be easily derived from a simple toy linear model, and as such our results land further credence to arguments that adversarial examples are endemic to locally linear models on high dimensional spaces.
This paper investigates the problem of combinatorial multiarmed bandits with stochastic submodular (in expectation) rewards and full-bandit delayed feedback, where the delayed feedback is assumed to be composite and anonymous. In other words, the delayed feedback is composed of components of rewards from past actions, with unknown division among the sub-components. Three models of delayed feedback: bounded adversarial, stochastic independent, and stochastic conditionally independent are studied, and regret bounds are derived for each of the delay models. Ignoring the problem dependent parameters, we show that regret bound for all the delay models is $\tilde{O}(T^{2/3} + T^{1/3} \nu)$ for time horizon $T$, where $\nu$ is a delay parameter defined differently in the three cases, thus demonstrating an additive term in regret with delay in all the three delay models. The considered algorithm is demonstrated to outperform other full-bandit approaches with delayed composite anonymous feedback.
We consider a multi-process remote estimation system observing $K$ independent Ornstein-Uhlenbeck processes. In this system, a shared sensor samples the $K$ processes in such a way that the long-term average sum mean square error (MSE) is minimized. The sensor operates under a total sampling frequency constraint $f_{\max}$. The samples from all processes consume random processing delays in a shared queue and then are transmitted over an erasure channel with probability $\epsilon$. We study two variants of the problem: first, when the samples are scheduled according to a Maximum-Age-First (MAF) policy, and the receiver provides an erasure status feedback; and second, when samples are scheduled according to a Round-Robin (RR) policy, when there is no erasure status feedback from the receiver. Aided by optimal structural results, we show that the optimal sampling policy for both settings, under some conditions, is a \emph{threshold policy}. We characterize the optimal threshold and the corresponding optimal long-term average sum MSE as a function of $K$, $f_{\max}$, $\epsilon$, and the statistical properties of the observed processes. Our results show that, with an exponentially distributed service rate, the optimal threshold $\tau^*$ increases as the number of processes $K$ increases, for both settings. Additionally, we show that the optimal threshold is an \emph{increasing} function of $\epsilon$ in the case of \emph{available} erasure status feedback, while it exhibits the \emph{opposite behavior}, i.e., $\tau^*$ is a \emph{decreasing} function of $\epsilon$, in the case of \emph{absent} erasure status feedback.
Linear systems with a tensor product structure arise naturally when considering the discretization of Laplace type differential equations or, more generally, multidimensional operators with separable coefficients. In this work, we focus on the numerical solution of linear systems of the form $$ \left(I\otimes \dots\otimes I \otimes A_1+\dots + A_d\otimes I \otimes\dots \otimes I\right)x=b,$$ where the matrices $A_t\in\mathbb R^{n\times n}$ are symmetric positive definite and belong to the class of hierarchically semiseparable matrices. We propose and analyze a nested divide-and-conquer scheme, based on the technology of low-rank updates, that attains the quasi-optimal computational cost $\mathcal O(n^d (\log(n) + \log(\kappa)^2 + \log(\kappa) \log(\epsilon^{-1})))$ where $\kappa$ is the condition number of the linear system, and $\epsilon$ the target accuracy. Our theoretical analysis highlights the role of inexactness in the nested calls of our algorithm and provides worst case estimates for the amplification of the residual norm. The performances are validated on 2D and 3D case studies.
In this paper, we improve the regret bound for online kernel selection under bandit feedback. Previous algorithm enjoys a $O((\Vert f\Vert^2_{\mathcal{H}_i}+1)K^{\frac{1}{3}}T^{\frac{2}{3}})$ expected bound for Lipschitz loss functions. We prove two types of regret bounds improving the previous bound. For smooth loss functions, we propose an algorithm with a $O(U^{\frac{2}{3}}K^{-\frac{1}{3}}(\sum^K_{i=1}L_T(f^\ast_i))^{\frac{2}{3}})$ expected bound where $L_T(f^\ast_i)$ is the cumulative losses of optimal hypothesis in $\mathbb{H}_{i}=\{f\in\mathcal{H}_i:\Vert f\Vert_{\mathcal{H}_i}\leq U\}$. The data-dependent bound keeps the previous worst-case bound and is smaller if most of candidate kernels match well with the data. For Lipschitz loss functions, we propose an algorithm with a $O(U\sqrt{KT}\ln^{\frac{2}{3}}{T})$ expected bound asymptotically improving the previous bound. We apply the two algorithms to online kernel selection with time constraint and prove new regret bounds matching or improving the previous $O(\sqrt{T\ln{K}} +\Vert f\Vert^2_{\mathcal{H}_i}\max\{\sqrt{T},\frac{T}{\sqrt{\mathcal{R}}}\})$ expected bound where $\mathcal{R}$ is the time budget. Finally, we empirically verify our algorithms on online regression and classification tasks.
Human-machine interaction (HMI) and human-robot interaction (HRI) can assist structural monitoring and structural dynamics testing in the laboratory and field. In vibratory experimentation, one mode of generating vibration is to use electrodynamic exciters. Manual control is a common way of setting the input of the exciter by the operator. To measure the structural responses to these generated vibrations sensors are attached to the structure. These sensors can be deployed by repeatable robots with high endurance, which require on-the-fly control. If the interface between operators and the controls was augmented, then operators can visualize the experiments, exciter levels, and define robot input with a better awareness of the area of interest. Robots can provide better aid to humans if intelligent on-the-fly control of the robot is: (1) quantified and presented to the human; (2) conducted in real-time for human feedback informed by data. Information provided by the new interface would be used to change the control input based on their understanding of real-time parameters. This research proposes using Augmented Reality (AR) applications to provide humans with sensor feedback and control of actuators and robots. This method improves cognition by allowing the operator to maintain awareness of structures while adjusting conditions accordingly with the assistance of the new real-time interface. One interface application is developed to plot sensor data in addition to voltage, frequency, and duration controls for vibration generation. Two more applications are developed under similar framework, one to control the position of a mediating robot and one to control the frequency of the robot movement. This paper presents the proposed model for the new control loop and then compares the new approach with a traditional method by measuring time delay in control input and user efficiency.
Normalized random measures with independent increments represent a large class of Bayesian nonaprametric priors and are widely used in the Bayesian nonparametric framework. In this paper, we provide the posterior consistency analysis for normalized random measures with independent increments (NRMIs) through the corresponding Levy intensities used to characterize the completely random measures in the construction of NRMIs. Assumptions are introduced on the Levy intensities to analyze the posterior consistency of NRMIs and are verified with multiple interesting examples. A focus of the paper is the Bernstein-von Mises theorem for the normalized generalized gamma process (NGGP) when the true distribution of the sample is discrete or continuous. When the Bernstein-von Mises theorem is applied to construct credible sets, in addition to the usual form there will be an additional bias term on the left endpoint closely related to the number of atoms of the true distribution when it is discrete. We also discuss the affect of the estimators for the model parameters of the NGGP under the Bernstein-von Mises convergences. Finally, to further explain the necessity of adding the bias correction in constructing credible sets, we illustrate numerically how the bias correction affects the coverage of the true value by the credible sets when the true distribution is discrete.
We study the problem of zeroth-order (black-box) optimization of a Lipschitz function $f$ defined on a compact subset $\mathcal X$ of $\mathbb R^d$, with the additional constraint that algorithms must certify the accuracy of their recommendations. We characterize the optimal number of evaluations of any Lipschitz function $f$ to find and certify an approximate maximizer of $f$ at accuracy $\varepsilon$. Under a weak assumption on $\mathcal X$, this optimal sample complexity is shown to be nearly proportional to the integral $\int_{\mathcal X} \mathrm{d}\boldsymbol x/( \max(f) - f(\boldsymbol x) + \varepsilon )^d$. This result, which was only (and partially) known in dimension $d=1$, solves an open problem dating back to 1991. In terms of techniques, our upper bound relies on a packing bound by Bouttier al. (2020) for the Piyavskii-Shubert algorithm that we link to the above integral. We also show that a certified version of the computationally tractable DOO algorithm matches these packing and integral bounds. Our instance-dependent lower bound differs from traditional worst-case lower bounds in the Lipschitz setting and relies on a local worst-case analysis that could likely prove useful for other learning tasks.
Background, enhancing interoperability of bioinformatics knowledge bases is a high priority requirement to maximize data reusability, and thus increase their utility such as the return on investment for biomedical research. A knowledge base may provide useful information for life scientists and other knowledge bases, but it only acquires exchange value once the knowledge base is (re)used, and without interoperability the utility lies dormant. Results, in this article, we discuss several approaches to boost interoperability depending on the interoperable parts. The findings are driven by several real-world scenario examples that were mostly implemented by Bgee, a well-established gene expression database. Moreover, we discuss ten general main lessons learnt. These lessons can be applied in the context of any bioinformatics knowledge base to foster data reusability. Conclusions, this work provides pragmatic methods and transferable skills to promote reusability of bioinformatics knowledge bases by focusing on interoperability.
Multi-view networks are ubiquitous in real-world applications. In order to extract knowledge or business value, it is of interest to transform such networks into representations that are easily machine-actionable. Meanwhile, network embedding has emerged as an effective approach to generate distributed network representations. Therefore, we are motivated to study the problem of multi-view network embedding, with a focus on the characteristics that are specific and important in embedding this type of networks. In our practice of embedding real-world multi-view networks, we identify two such characteristics, which we refer to as preservation and collaboration. We then explore the feasibility of achieving better embedding quality by simultaneously modeling preservation and collaboration, and propose the mvn2vec algorithms. With experiments on a series of synthetic datasets, an internal Snapchat dataset, and two public datasets, we further confirm the presence and importance of preservation and collaboration. These experiments also demonstrate that better embedding can be obtained by simultaneously modeling the two characteristics, while not over-complicating the model or requiring additional supervision.