With the rapid growth of intelligent transportation systems (ITS), there is a growing need to support real-time network applications. However, terrestrial networks are insufficient to support diverse applications for remote airplanes ships, and trains. Meanwhile, satellite networks can be a great supplement to terrestrial networks regarding coverage, flexibility, and availability. Thus, we investigate a novel ITS data offloading and computations services based on satellite networks, in which low-Earth orbit (LEO) and cube satellites are regarded as independent mobile edge computing (MEC) servers, responsible for scheduling the processing of ITS data generated by ITS nodes. We formulate a joint delay and rental price minimization problem for different satellite servers while optimizing offloading task selection, computing, and bandwidth resource allocation, which is mixed-integer non-linear programming (MINLP) and NP-hard. To deal with the problem's complexity, we divide the problem into two stages. Firstly, we proposed a cooperative multi-agent proximal policy optimization (Co-MAPPO) deep reinforcement learning (DRL) with an attention approach for determining intelligent offloading decisions with quick convergence. Secondly, we break down the remaining subproblem into independent subproblems and find their optimal closed-form solutions. Extensive simulations are utilized to validate the proposed approach's effectiveness in comparison to baselines by 8.92% and 3.14% respectively.
Event-based cameras are raising interest within the computer vision community. These sensors operate with asynchronous pixels, emitting events, or "spikes", when the luminance change at a given pixel since the last event surpasses a certain threshold. Thanks to their inherent qualities, such as their low power consumption, low latency and high dynamic range, they seem particularly tailored to applications with challenging temporal constraints and safety requirements. Event-based sensors are an excellent fit for Spiking Neural Networks (SNNs), since the coupling of an asynchronous sensor with neuromorphic hardware can yield real-time systems with minimal power requirements. In this work, we seek to develop one such system, using both event sensor data from the DSEC dataset and spiking neural networks to estimate optical flow for driving scenarios. We propose a U-Net-like SNN which, after supervised training, is able to make dense optical flow estimations. To do so, we encourage both minimal norm for the error vector and minimal angle between ground-truth and predicted flow, training our model with back-propagation using a surrogate gradient. In addition, the use of 3d convolutions allows us to capture the dynamic nature of the data by increasing the temporal receptive fields. Upsampling after each decoding stage ensures that each decoder's output contributes to the final estimation. Thanks to separable convolutions, we have been able to develop a light model (when compared to competitors) that can nonetheless yield reasonably accurate optical flow estimates.
With the continuous increment of maritime applications, the development of marine networks for data offloading becomes necessary. However, the limited maritime network resources are very difficult to satisfy real-time demands. Besides, how to effectively handle multiple compute-intensive tasks becomes another intractable issue. Hence, in this paper, we focus on the decision of maritime task offloading by the cooperation of unmanned aerial vehicles (UAVs) and vessels. Specifically, we first propose a cooperative offloading framework, including the demands from marine Internet of Things (MIoTs) devices and resource providers from UAVs and vessels. Due to the limited energy and computation ability of UAVs, it is necessary to help better apply the vessels to computation offloading. Then, we formulate the studied problem into a Markov decision process, aiming to minimize the total execution time and energy cost. Then, we leverage Lyapunov optimization to convert the long-term constraints of the total execution time and energy cost into their short-term constraints, further yielding a set of per-time-slot optimization problems. Furthermore, we propose a Q-learning based approach to solve the short-term problem efficiently. Finally, simulation results are conducted to verify the correctness and effectiveness of the proposed algorithm.
Our goal is to develop theory and algorithms for establishing fundamental limits on performance for a given task imposed by a robot's sensors. In order to achieve this, we define a quantity that captures the amount of task-relevant information provided by a sensor. Using a novel version of the generalized Fano inequality from information theory, we demonstrate that this quantity provides an upper bound on the highest achievable expected reward for one-step decision making tasks. We then extend this bound to multi-step problems via a dynamic programming approach. We present algorithms for numerically computing the resulting bounds, and demonstrate our approach on three examples: (i) the lava problem from the literature on partially observable Markov decision processes, (ii) an example with continuous state and observation spaces corresponding to a robot catching a freely-falling object, and (iii) obstacle avoidance using a depth sensor with non-Gaussian noise. We demonstrate the ability of our approach to establish strong limits on achievable performance for these problems by comparing our upper bounds with achievable lower bounds (computed by synthesizing or learning concrete control policies).
Zero-shot coordination in cooperative artificial intelligence (AI) remains a significant challenge, which means effectively coordinating with a wide range of unseen partners. Previous algorithms have attempted to address this challenge by optimizing fixed objectives within a population to improve strategy or behavior diversity. However, these approaches can result in a loss of learning and an inability to cooperate with certain strategies within the population, known as cooperative incompatibility. To address this issue, we propose the Cooperative Open-ended LEarning (COLE) framework, which constructs open-ended objectives in cooperative games with two players from the perspective of graph theory to assess and identify the cooperative ability of each strategy. We further specify the framework and propose a practical algorithm that leverages knowledge from game theory and graph theory. Furthermore, an analysis of the learning process of the algorithm shows that it can efficiently overcome cooperative incompatibility. The experimental results in the Overcooked game environment demonstrate that our method outperforms current state-of-the-art methods when coordinating with different-level partners. Our code and demo are available at //sites.google.com/view/cole-2023.
Reaching tasks with random targets and obstacles is a challenging task for robotic manipulators. In this study, we propose a novel model-free reinforcement learning approach based on proximal policy optimization (PPO) for training a deep policy to map the task space to the joint space of a 6-DoF manipulator. To facilitate the training process in a large workspace, we develop an efficient representation of environmental inputs and outputs. The calculation of the distance between obstacles and manipulator links is incorporated into the state representation using a geometry-based method. Additionally, to enhance the performance of the model in reaching tasks, we introduce the action ensembles method and design the policy to directly participate in value function updates in PPO. To overcome the challenges associated with training in real-robot environments, we develop a simulation environment in Gazebo to train the model as it produces a smaller Sim-to-Real gap compared to other simulators. However, training in Gazebo is time-intensive. To address this issue, we propose a Sim-to-Sim method to significantly reduce the training time. The trained model is then directly applied in a real-robot setup without fine-tuning. To evaluate the performance of the proposed approach, we perform several rounds of experiments in both simulated and real robots. We also compare the performance of the proposed approach with six baselines. The experimental results demonstrate the effectiveness of the proposed method in performing reaching tasks with and without obstacles. our method outperformed the selected baselines by a large margin in different reaching task scenarios. A video of these experiments has been attached to the paper as supplementary material.
This paper proposes a novel quantum multi-agent actor-critic networks (QMACN) algorithm for autonomously constructing a robust mobile access system using multiple unmanned aerial vehicles (UAVs). For the cooperation of multiple UAVs for autonomous mobile access, multi-agent reinforcement learning (MARL) methods are considered. In addition, we also adopt the concept of quantum computing (QC) to improve the training and inference performances. By utilizing QC, scalability and physical issues can happen. However, our proposed QMACN algorithm builds quantum critic and multiple actor networks in order to handle such problems. Thus, our proposed QMACN algorithm verifies the advantage of quantum MARL with remarkable performance improvements in terms of training speed and wireless service quality in various data-intensive evaluations. Furthermore, we validate that a noise injection scheme can be used for handling environmental uncertainties in order to realize robust mobile access. Our data-intensive simulation results verify that our proposed QMACN algorithm outperforms the other existing algorithms.
Neural network training is usually accomplished by solving a non-convex optimization problem using stochastic gradient descent. Although one optimizes over the networks parameters, the main loss function generally only depends on the realization of the neural network, i.e. the function it computes. Studying the optimization problem over the space of realizations opens up new ways to understand neural network training. In particular, usual loss functions like mean squared error and categorical cross entropy are convex on spaces of neural network realizations, which themselves are non-convex. Approximation capabilities of neural networks can be used to deal with the latter non-convexity, which allows us to establish that for sufficiently large networks local minima of a regularized optimization problem on the realization space are almost optimal. Note, however, that each realization has many different, possibly degenerate, parametrizations. In particular, a local minimum in the parametrization space needs not correspond to a local minimum in the realization space. To establish such a connection, inverse stability of the realization map is required, meaning that proximity of realizations must imply proximity of corresponding parametrizations. We present pathologies which prevent inverse stability in general, and, for shallow networks, proceed to establish a restricted space of parametrizations on which we have inverse stability w.r.t. to a Sobolev norm. Furthermore, we show that by optimizing over such restricted sets, it is still possible to learn any function which can be learned by optimization over unrestricted sets.
Graph machine learning has been extensively studied in both academic and industry. However, as the literature on graph learning booms with a vast number of emerging methods and techniques, it becomes increasingly difficult to manually design the optimal machine learning algorithm for different graph-related tasks. To tackle the challenge, automated graph machine learning, which aims at discovering the best hyper-parameter and neural architecture configuration for different graph tasks/data without manual design, is gaining an increasing number of attentions from the research community. In this paper, we extensively discuss automated graph machine approaches, covering hyper-parameter optimization (HPO) and neural architecture search (NAS) for graph machine learning. We briefly overview existing libraries designed for either graph machine learning or automated machine learning respectively, and further in depth introduce AutoGL, our dedicated and the world's first open-source library for automated graph machine learning. Last but not least, we share our insights on future research directions for automated graph machine learning. This paper is the first systematic and comprehensive discussion of approaches, libraries as well as directions for automated graph machine learning.
A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.
Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.