亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Differentiable Search Index (DSI) utilizes Pre-trained Language Models (PLMs) for efficient document retrieval without relying on external indexes. However, DSIs need full re-training to handle updates in dynamic corpora, causing significant computational inefficiencies. We introduce PromptDSI, a rehearsal-free, prompt-based approach for instance-wise incremental learning in document retrieval. PromptDSI attaches prompts to the frozen PLM's encoder of DSI, leveraging its powerful representation to efficiently index new corpora while maintaining a balance between stability and plasticity. We eliminate the initial forward pass of prompt-based continual learning methods that doubles training and inference time. Moreover, we propose a topic-aware prompt pool that employs neural topic embeddings as fixed keys. This strategy ensures diverse and effective prompt usage, addressing the challenge of parameter underutilization caused by the collapse of the query-key matching mechanism. Our empirical evaluations demonstrate that PromptDSI matches IncDSI in managing forgetting while significantly enhancing recall by over 4% on new corpora.

相關內容

We present Knesset-DictaBERT, a large Hebrew language model fine-tuned on the Knesset Corpus, which comprises Israeli parliamentary proceedings. The model is based on the DictaBERT architecture and demonstrates significant improvements in understanding parliamentary language according to the MLM task. We provide a detailed evaluation of the model's performance, showing improvements in perplexity and accuracy over the baseline DictaBERT model.

Recent neural implicit representations (NIRs) have achieved great success in the tasks of 3D reconstruction and novel view synthesis. However, they require the images of a scene from different camera views to be available for one-time training. This is expensive especially for scenarios with large-scale scenes and limited data storage. In view of this, we explore the task of incremental learning for NIRs in this work. We design a student-teacher framework to mitigate the catastrophic forgetting problem. Specifically, we iterate the process of using the student as the teacher at the end of each time step and let the teacher guide the training of the student in the next step. As a result, the student network is able to learn new information from the streaming data and retain old knowledge from the teacher network simultaneously. Although intuitive, naively applying the student-teacher pipeline does not work well in our task. Not all information from the teacher network is helpful since it is only trained with the old data. To alleviate this problem, we further introduce a random inquirer and an uncertainty-based filter to filter useful information. Our proposed method is general and thus can be adapted to different implicit representations such as neural radiance field (NeRF) and neural surface field. Extensive experimental results for both 3D reconstruction and novel view synthesis demonstrate the effectiveness of our approach compared to different baselines.

This letter introduces a framework for the automatic generation of hardware cores for Artificial Neural Network (ANN)-based chaotic oscillators. The framework trains the model to approximate a chaotic system, then performs design space exploration yielding potential hardware architectures for its implementation. The framework then generates the corresponding synthesizable High-Level Synthesis code and a validation testbench from a selected solution. The hardware design primarily targets FPGAs. The proposed framework offers a rapid hardware design process of candidate architectures superior to manually designed works in terms of hardware cost and throughput. The source code is available on GitHub.

Novel Class Discovery (NCD) involves identifying new categories within unlabeled data by utilizing knowledge acquired from previously established categories. However, existing NCD methods often struggle to maintain a balance between the performance of old and new categories. Discovering unlabeled new categories in a class-incremental way is more practical but also more challenging, as it is frequently hindered by either catastrophic forgetting of old categories or an inability to learn new ones. Furthermore, the implementation of NCD on continuously scalable graph-structured data remains an under-explored area. In response to these challenges, we introduce for the first time a more practical NCD scenario for node classification (i.e., NC-NCD), and propose a novel self-training framework with prototype replay and distillation called SWORD, adopted to our NC-NCD setting. Our approach enables the model to cluster unlabeled new category nodes after learning labeled nodes while preserving performance on old categories without reliance on old category nodes. SWORD achieves this by employing a self-training strategy to learn new categories and preventing the forgetting of old categories through the joint use of feature prototypes and knowledge distillation. Extensive experiments on four common benchmarks demonstrate the superiority of SWORD over other state-of-the-art methods.

This short paper presents preliminary research on the Case-Enhanced Vision Transformer (CEViT), a similarity measurement method aimed at improving the explainability of similarity assessments for image data. Initial experimental results suggest that integrating CEViT into k-Nearest Neighbor (k-NN) classification yields classification accuracy comparable to state-of-the-art computer vision models, while adding capabilities for illustrating differences between classes. CEViT explanations can be influenced by prior cases, to illustrate aspects of similarity relevant to those cases.

The rapid development of Large Language Models (LLMs) has brought remarkable generative capabilities across diverse tasks. However, despite the impressive achievements, these models still have numerous security vulnerabilities, particularly when faced with jailbreak attacks. Therefore, by investigating jailbreak attacks, we can uncover hidden weaknesses in LLMs and guide us in developing more robust defense mechanisms to fortify their security. In this paper, we further explore the boundary of jailbreak attacks on LLMs and propose Analyzing-based Jailbreak (ABJ). This effective jailbreak attack method takes advantage of LLMs' growing analyzing and reasoning capability and reveals their underlying vulnerabilities when facing analysis-based tasks. We conduct a detailed evaluation of ABJ across various open-source and closed-source LLMs, which achieves 94.8% Attack Success Rate (ASR) and 1.06 Attack Efficiency (AE) on GPT-4-turbo-0409, demonstrating state-of-the-art attack effectiveness and efficiency. Our research highlights the importance of prioritizing and enhancing the safety of LLMs to mitigate the risks of misuse.

Recent work shows that documents from encyclopedias serve as helpful auxiliary information for zero-shot learning. Existing methods align the entire semantics of a document with corresponding images to transfer knowledge. However, they disregard that semantic information is not equivalent between them, resulting in a suboptimal alignment. In this work, we propose a novel network to extract multi-view semantic concepts from documents and images and align the matching rather than entire concepts. Specifically, we propose a semantic decomposition module to generate multi-view semantic embeddings from visual and textual sides, providing the basic concepts for partial alignment. To alleviate the issue of information redundancy among embeddings, we propose the local-to-semantic variance loss to capture distinct local details and multiple semantic diversity loss to enforce orthogonality among embeddings. Subsequently, two losses are introduced to partially align visual-semantic embedding pairs according to their semantic relevance at the view and word-to-patch levels. Consequently, we consistently outperform state-of-the-art methods under two document sources in three standard benchmarks for document-based zero-shot learning. Qualitatively, we show that our model learns the interpretable partial association.

Complete Multi-lingual Neural Machine Translation (C-MNMT) achieves superior performance against the conventional MNMT by constructing multi-way aligned corpus, i.e., aligning bilingual training examples from different language pairs when either their source or target sides are identical. However, since exactly identical sentences from different language pairs are scarce, the power of the multi-way aligned corpus is limited by its scale. To handle this problem, this paper proposes "Extract and Generate" (EAG), a two-step approach to construct large-scale and high-quality multi-way aligned corpus from bilingual data. Specifically, we first extract candidate aligned examples by pairing the bilingual examples from different language pairs with highly similar source or target sentences; and then generate the final aligned examples from the candidates with a well-trained generation model. With this two-step pipeline, EAG can construct a large-scale and multi-way aligned corpus whose diversity is almost identical to the original bilingual corpus. Experiments on two publicly available datasets i.e., WMT-5 and OPUS-100, show that the proposed method achieves significant improvements over strong baselines, with +1.1 and +1.4 BLEU points improvements on the two datasets respectively.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.

北京阿比特科技有限公司