亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Due to the lack of corresponding analysis on appropriate mapping operator between two grids, high-order two-grid difference algorithms are rarely studied. In this paper, we firstly discuss the boundedness of a local bi-cubic Lagrange interpolation operator. And then, taking the semilinear parabolic equation as an example, we first construct a variable-step high-order nonlinear difference algorithm using compact difference technique in space and the second-order backward differentiation formula (BDF2) with variable temporal stepsize in time. With the help of discrete orthogonal convolution (DOC) kernels and a cut-off numerical technique, the unique solvability and corresponding error estimates of the high-order nonlinear difference scheme are established under assumptions that the temporal stepsize ratio satisfies rk < 4.8645 and the maximum temporal stepsize satisfies tau = o(h^1/2 ). Then, an efficient two-grid high-order difference algorithm is developed by combining a small-scale variable-step high-order nonlinear difference algorithm on the coarse grid and a large-scale variable-step high-order linearized difference algorithm on the fine grid, in which the constructed piecewise bi-cubic Lagrange interpolation mapping operator is adopted to project the coarse-grid solution to the fine grid. Under the same temporal stepsize ratio restriction rk < 4.8645 and a weaker maximum temporal stepsize condition tau = o(H^1.2 ), optimal fourth-order in space and second-order in time error estimates of the two-grid difference scheme is established if the coarse-fine grid stepsizes satisfy H = O(h^4/7). Finally, several numerical experiments are carried out to demonstrate the effectiveness and efficiency of the proposed scheme.

相關內容

We propose a new randomized method for solving systems of nonlinear equations, which can find sparse solutions or solutions under certain simple constraints. The scheme only takes gradients of component functions and uses Bregman projections onto the solution space of a Newton equation. In the special case of euclidean projections, the method is known as nonlinear Kaczmarz method. Furthermore, if the component functions are nonnegative, we are in the setting of optimization under the interpolation assumption and the method reduces to SGD with the recently proposed stochastic Polyak step size. For general Bregman projections, our method is a stochastic mirror descent with a novel adaptive step size. We prove that in the convex setting each iteration of our method results in a smaller Bregman distance to exact solutions as compared to the standard Polyak step. Our generalization to Bregman projections comes with the price that a convex one-dimensional optimization problem needs to be solved in each iteration. This can typically be done with globalized Newton iterations. Convergence is proved in two classical settings of nonlinearity: for convex nonnegative functions and locally for functions which fulfill the tangential cone condition. Finally, we show examples in which the proposed method outperforms similar methods with the same memory requirements.

In many practical control applications, the performance level of a closed-loop system degrades over time due to the change of plant characteristics. Thus, there is a strong need for redesigning a controller without going through the system modeling process, which is often difficult for closed-loop systems. Reinforcement learning (RL) is one of the promising approaches that enable model-free redesign of optimal controllers for nonlinear dynamical systems based only on the measurement of the closed-loop system. However, the learning process of RL usually requires a considerable number of trial-and-error experiments using the poorly controlled system that may accumulate wear on the plant. To overcome this limitation, we propose a model-free two-step design approach that improves the transient learning performance of RL in an optimal regulator redesign problem for unknown nonlinear systems. Specifically, we first design a linear control law that attains some degree of control performance in a model-free manner, and then, train the nonlinear optimal control law with online RL by using the designed linear control law in parallel. We introduce an offline RL algorithm for the design of the linear control law and theoretically guarantee its convergence to the LQR controller under mild assumptions. Numerical simulations show that the proposed approach improves the transient learning performance and efficiency in hyperparameter tuning of RL.

We present compact semi-implicit finite difference schemes on structured grids for numerical solutions of the advection by an external velocity and by a speed in normal direction that are applicable in level set methods. The most involved numerical scheme is third order accurate for the linear advection with a space dependent velocity and unconditionally stable in the sense of von Neumann stability analysis. We also present a simple high-resolution scheme that gives a TVD (Total Variation Diminishing) approximation of the spatial derivative for the advected level set function. In the case of nonlinear advection, the semi-implicit discretization is proposed to linearize the problem. The compact form of implicit stencil in numerical schemes containing unknowns only in the upwind direction allows applications of efficient algebraic solvers like fast sweeping methods. Numerical tests to evolve a smooth and non-smooth interface and an example with a large variation of velocity confirm the good accuracy of the methods and fast convergence of the algebraic solver even in the case of very large Courant numbers.

We analyze the wave equation in mixed form, with periodic and/or Dirichlet homogeneous boundary conditions, and nonconstant coefficients that depend on the spatial variable. For the discretization, the weak form of the second equation is replaced by a strong form, written in terms of a projection operator. The system of equations is discretized with B-splines forming a De Rham complex along with suitable commutative projectors for the approximation of the second equation. The discrete scheme is energy conservative when discretized in time with a conservative method such as Crank-Nicolson. We propose a convergence analysis of the method to study the dependence with respect to the mesh size $h$, with focus on the consistency error. Numerical results show optimal convergence of the error in energy norm, and a relative error in energy conservation for long-time simulations of the order of machine precision.

Parameter identification problems in partial differential equations (PDEs) consist in determining one or more unknown functional parameters in a PDE. Here, the Bayesian nonparametric approach to such problems is considered. Focusing on the representative example of inferring the diffusivity function in an elliptic PDE from noisy observations of the PDE solution, the performance of Bayesian procedures based on Gaussian process priors is investigated. Recent asymptotic theoretical guarantees establishing posterior consistency and convergence rates are reviewed and expanded upon. An implementation of the associated posterior-based inference is provided, and illustrated via a numerical simulation study where two different discretisation strategies are devised. The reproducible code is available at: //github.com/MattGiord.

We prove closed-form equations for the exact high-dimensional asymptotics of a family of first order gradient-based methods, learning an estimator (e.g. M-estimator, shallow neural network, ...) from observations on Gaussian data with empirical risk minimization. This includes widely used algorithms such as stochastic gradient descent (SGD) or Nesterov acceleration. The obtained equations match those resulting from the discretization of dynamical mean-field theory (DMFT) equations from statistical physics when applied to gradient flow. Our proof method allows us to give an explicit description of how memory kernels build up in the effective dynamics, and to include non-separable update functions, allowing datasets with non-identity covariance matrices. Finally, we provide numerical implementations of the equations for SGD with generic extensive batch-size and with constant learning rates.

Mean-field molecular dynamics based on path integrals is used to approximate canonical quantum observables for particle systems consisting of nuclei and electrons. A computational bottleneck is the sampling from the Gibbs density of the electron operator, which due to the fermion sign problem has a computational complexity that scales exponentially with the number of electrons. In this work we construct an algorithm that approximates the mean-field Hamiltonian by path integrals for fermions. The algorithm is based on the determinant of a matrix with components based on Brownian bridges connecting permuted electron coordinates. The computational work for $n$ electrons is $\mathcal O(n^3)$, which reduces the computational complexity associated with the fermion sign problem. We analyze a bias resulting from this approximation and provide a computational error indicator. It remains to rigorously explain the surprisingly high accuracy.

We study the optimal sample complexity of neighbourhood selection in linear structural equation models, and compare this to best subset selection (BSS) for linear models under general design. We show by example that -- even when the structure is \emph{unknown} -- the existence of underlying structure can reduce the sample complexity of neighbourhood selection. This result is complicated by the possibility of path cancellation, which we study in detail, and show that improvements are still possible in the presence of path cancellation. Finally, we support these theoretical observations with experiments. The proof introduces a modified BSS estimator, called klBSS, and compares its performance to BSS. The analysis of klBSS may also be of independent interest since it applies to arbitrary structured models, not necessarily those induced by a structural equation model. Our results have implications for structure learning in graphical models, which often relies on neighbourhood selection as a subroutine.

We construct explicit easily implementable polynomial approximations of sufficiently high accuracy for locally constant functions on the union of disjoint segments. This problem has important applications in several areas of numerical analysis, complexity theory, quantum algorithms, etc. The one, most relevant for us, is the amplification of approximation method: it allows to construct approximations of higher degree $M$ and better accuracy from the approximations of degree $m$.

Ordinary differential equations (ODEs) can provide mechanistic models of temporally local changes of processes, where parameters are often informed by external knowledge. While ODEs are popular in systems modeling, they are less established for statistical modeling of longitudinal cohort data, e.g., in a clinical setting. Yet, modeling of local changes could also be attractive for assessing the trajectory of an individual in a cohort in the immediate future given its current status, where ODE parameters could be informed by further characteristics of the individual. However, several hurdles so far limit such use of ODEs, as compared to regression-based function fitting approaches. The potentially higher level of noise in cohort data might be detrimental to ODEs, as the shape of the ODE solution heavily depends on the initial value. In addition, larger numbers of variables multiply such problems and might be difficult to handle for ODEs. To address this, we propose to use each observation in the course of time as the initial value to obtain multiple local ODE solutions and build a combined estimator of the underlying dynamics. Neural networks are used for obtaining a low-dimensional latent space for dynamic modeling from a potentially large number of variables, and for obtaining patient-specific ODE parameters from baseline variables. Simultaneous identification of dynamic models and of a latent space is enabled by recently developed differentiable programming techniques. We illustrate the proposed approach in an application with spinal muscular atrophy patients and a corresponding simulation study. In particular, modeling of local changes in health status at any point in time is contrasted to the interpretation of functions obtained from a global regression. This more generally highlights how different application settings might demand different modeling strategies.

北京阿比特科技有限公司