We develop a graphical calculus of manifold diagrams which generalises string and surface diagrams to arbitrary dimensions. Manifold diagrams are pasting diagrams for $(\infty, n)$-categories that admit a semi-strict composition operation for which associativity and unitality is strict. The weak interchange law satisfied by composition of manifold diagrams is determined geometrically through isotopies of diagrams. By building upon framed combinatorial topology, we can classify critical points in isotopies at which the arrangement of cells changes. This allows us to represent manifold diagrams combinatorially and use them as shapes with which to probe $(\infty, n)$-categories, presented as $n$-fold Segal spaces. Moreover, for any system of labels for the singularities in a manifold diagram, we show how to generate a free $(\infty, n)$-category.
Memory layers use a trainable key-value lookup mechanism to add extra parameters to a model without increasing FLOPs. Conceptually, sparsely activated memory layers complement compute-heavy dense feed-forward layers, providing dedicated capacity to store and retrieve information cheaply. This work takes memory layers beyond proof-of-concept, proving their utility at contemporary scale. On downstream tasks, language models augmented with our improved memory layer outperform dense models with more than twice the computation budget, as well as mixture-of-expert models when matched for both compute and parameters. We find gains are especially pronounced for factual tasks. We provide a fully parallelizable memory layer implementation, demonstrating scaling laws with up to 128B memory parameters, pretrained to 1 trillion tokens, comparing to base models with up to 8B parameters.
A structural graph summary is a small graph representation that preserves structural information necessary for a given task. The summary is used instead of the original graph to complete the task faster. We introduce multi-view structural graph summaries and propose an algorithm for merging two summaries. We conduct a theoretical analysis of our algorithm. We run experiments on three datasets, contributing two new ones. The datasets are of different domains (web graph, source code, and news) and sizes; the interpretation of multi-view depends on the domain and are pay-level domains on the web, control vs.\@ data flow of the code, and news broadcasters. We experiment with three graph summary models: attribute collection, class collection, and their combination. We observe that merging two structural summaries has an upper bound of quadratic complexity; but under reasonable assumptions, it has linear-time worst-case complexity. The running time of merging has a strong linear correlation with the number of edges in the two summaries. Therefore, the experiments support the assumption that the upper bound of quadratic complexity is not tight and that linear complexity is possible. Furthermore, our experiments show that always merging the two smallest summaries by the number of edges is the most efficient strategy for merging multiple structural summaries.
We establish that a non-Gaussian nonparametric regression model is asymptotically equivalent to a regression model with Gaussian noise. The approximation is in the sense of Le Cam's deficiency distance $\Delta $; the models are then asymptotically equivalent for all purposes of statistical decision with bounded loss. Our result concerns a sequence of independent but not identically distributed observations with each distribution in the same real-indexed exponential family. The canonical parameter is a value $f(t_i)$ of a regression function $f$ at a grid point $t_i$ (nonparametric GLM). When $f$ is in a H\"{o}lder ball with exponent $\beta >\frac 12 ,$ we establish global asymptotic equivalence to observations of a signal $\Gamma (f(t))$ in Gaussian white noise, where $\Gamma $ is related to a variance stabilizing transformation in the exponential family. The result is a regression analog of the recently established Gaussian approximation for the i.i.d. model. The proof is based on a functional version of the Hungarian construction for the partial sum process.
A near-field wideband beamforming scheme is investigated for reconfigurable intelligent surface (RIS) assisted multiple-input multiple-output (MIMO) systems, in which a deep learning-based end-to-end (E2E) optimization framework is proposed to maximize the system spectral efficiency. To deal with the near-field double beam split effect, the base station is equipped with frequency-dependent hybrid precoding architecture by introducing sub-connected true time delay (TTD) units, while two specific RIS architectures, namely true time delay-based RIS (TTD-RIS) and virtual subarray-based RIS (SA-RIS), are exploited to realize the frequency-dependent passive beamforming at the RIS. Furthermore, the efficient E2E beamforming models without explicit channel state information are proposed, which jointly exploits the uplink channel training module and the downlink wideband beamforming module. In the proposed network architecture of the E2E models, the classical communication signal processing methods, i.e., polarized filtering and sparsity transform, are leveraged to develop a signal-guided beamforming network. Numerical results show that the proposed E2E models have superior beamforming performance and robustness to conventional beamforming benchmarks. Furthermore, the tradeoff between the beamforming gain and the hardware complexity is investigated for different frequency-dependent RIS architectures, in which the TTD-RIS can achieve better spectral efficiency than the SA-RIS while requiring additional energy consumption and hardware cost.
Most pronouns are referring expressions, computers need to resolve what do the pronouns refer to, and there are divergences on pronoun usage across languages. Thus, dealing with these divergences and translating pronouns is a challenge in machine translation. Mentions are referring candidates of pronouns and have closer relations with pronouns compared to general tokens. We assume that extracting additional mention features can help pronoun translation. Therefore, we introduce an additional mention attention module in the decoder to pay extra attention to source mentions but not non-mention tokens. Our mention attention module not only extracts features from source mentions, but also considers target-side context which benefits pronoun translation. In addition, we also introduce two mention classifiers to train models to recognize mentions, whose outputs guide the mention attention. We conduct experiments on the WMT17 English-German translation task, and evaluate our models on general translation and pronoun translation, using BLEU, APT, and contrastive evaluation metrics. Our proposed model outperforms the baseline Transformer model in terms of APT and BLEU scores, this confirms our hypothesis that we can improve pronoun translation by paying additional attention to source mentions, and shows that our introduced additional modules do not have negative effect on the general translation quality.
Beyond conventional paradigms of translating speech and text, recently, there has been interest in automated transcreation of images to facilitate localization of visual content across different cultures. Attempts to define this as a formal Machine Learning (ML) problem have been impeded by the lack of automatic evaluation mechanisms, with previous work relying solely on human evaluation. In this paper, we seek to close this gap by proposing a suite of automatic evaluation metrics inspired by machine translation (MT) metrics, categorized into: a) Object-based, b) Embedding-based, and c) VLM-based. Drawing on theories from translation studies and real-world transcreation practices, we identify three critical dimensions of image transcreation: cultural relevance, semantic equivalence and visual similarity, and design our metrics to evaluate systems along these axes. Our results show that proprietary VLMs best identify cultural relevance and semantic equivalence, while vision-encoder representations are adept at measuring visual similarity. Meta-evaluation across 7 countries shows our metrics agree strongly with human ratings, with average segment-level correlations ranging from 0.55-0.87. Finally, through a discussion of the merits and demerits of each metric, we offer a robust framework for automated image transcreation evaluation, grounded in both theoretical foundations and practical application. Our code can be found here: //github.com/simran-khanuja/automatic-eval-transcreation
Signed graphs allow for encoding positive and negative relations between nodes and are used to model various online activities. Node representation learning for signed graphs is a well-studied task with important applications such as sign prediction. While the size of datasets is ever-increasing, recent methods often sacrifice scalability for accuracy. We propose a novel message-passing layer architecture called Graph Spring Network (GSN) modeled after spring forces. We combine it with a Graph Neural Ordinary Differential Equations (ODEs) formalism to optimize the system dynamics in embedding space to solve a downstream prediction task. Once the dynamics is learned, embedding generation for novel datasets is done by solving the ODEs in time using a numerical integration scheme. Our GSN layer leverages the fast-to-compute edge vector directions and learnable scalar functions that only depend on nodes' distances in latent space to compute the nodes' positions. Conversely, Graph Convolution and Graph Attention Network layers rely on learnable vector functions that require the full positions of input nodes in latent space. We propose a specific implementation called Spring-Neural-Network (SPR-NN) using a set of small neural networks mimicking attracting and repulsing spring forces that we train for link sign prediction. Experiments show that our method achieves accuracy close to the state-of-the-art methods with node generation time speedup factors of up to 28,000 on large graphs.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.