Occlusions hinder point cloud frame alignment in LiDAR data, a challenge inadequately addressed by scene flow models tested mainly on occlusion-free datasets. Attempts to integrate occlusion handling within networks often suffer accuracy issues due to two main limitations: a) the inadequate use of occlusion information, often merging it with flow estimation without an effective integration strategy, and b) reliance on distance-weighted upsampling that falls short in correcting occlusion-related errors. To address these challenges, we introduce the Correlation Matrix Upsampling Flownet (CMU-Flownet), incorporating an occlusion estimation module within its cost volume layer, alongside an Occlusion-aware Cost Volume (OCV) mechanism. Specifically, we propose an enhanced upsampling approach that expands the sensory field of the sampling process which integrates a Correlation Matrix designed to evaluate point-level similarity. Meanwhile, our model robustly integrates occlusion data within the context of scene flow, deploying this information strategically during the refinement phase of the flow estimation. The efficacy of this approach is demonstrated through subsequent experimental validation. Empirical assessments reveal that CMU-Flownet establishes state-of-the-art performance within the realms of occluded Flyingthings3D and KITTY datasets, surpassing previous methodologies across a majority of evaluated metrics.
Diffusion Models (DMs) have emerged as powerful generative models with unprecedented image generation capability. These models are widely used for data augmentation and creative applications. However, DMs reflect the biases present in the training datasets. This is especially concerning in the context of faces, where the DM prefers one demographic subgroup vs others (eg. female vs male). In this work, we present a method for debiasing DMs without relying on additional data or model retraining. Specifically, we propose Distribution Guidance, which enforces the generated images to follow the prescribed attribute distribution. To realize this, we build on the key insight that the latent features of denoising UNet hold rich demographic semantics, and the same can be leveraged to guide debiased generation. We train Attribute Distribution Predictor (ADP) - a small mlp that maps the latent features to the distribution of attributes. ADP is trained with pseudo labels generated from existing attribute classifiers. The proposed Distribution Guidance with ADP enables us to do fair generation. Our method reduces bias across single/multiple attributes and outperforms the baseline by a significant margin for unconditional and text-conditional diffusion models. Further, we present a downstream task of training a fair attribute classifier by rebalancing the training set with our generated data.
Recent studies highlighted a practical setting of unsupervised anomaly detection (UAD) that builds a unified model for multi-class images, serving as an alternative to the conventional one-class-one-model setup. Despite various advancements addressing this challenging task, the detection performance under the multi-class setting still lags far behind state-of-the-art class-separated models. Our research aims to bridge this substantial performance gap. In this paper, we introduce a minimalistic reconstruction-based anomaly detection framework, namely Dinomaly, which leverages pure Transformer architectures without relying on complex designs, additional modules, or specialized tricks. Given this powerful framework consisted of only Attentions and MLPs, we found four simple components that are essential to multi-class anomaly detection: (1) Foundation Transformers that extracts universal and discriminative features, (2) Noisy Bottleneck where pre-existing Dropouts do all the noise injection tricks, (3) Linear Attention that naturally cannot focus, and (4) Loose Reconstruction that does not force layer-to-layer and point-by-point reconstruction. Extensive experiments are conducted across three popular anomaly detection benchmarks including MVTec-AD, VisA, and the recently released Real-IAD. Our proposed Dinomaly achieves impressive image AUROC of 99.6%, 98.7%, and 89.3% on the three datasets respectively, which is not only superior to state-of-the-art multi-class UAD methods, but also surpasses the most advanced class-separated UAD records.
Event data captured by Dynamic Vision Sensors (DVS) offers a unique approach to visual processing that differs from traditional video capture, showcasing its efficiency in dynamic and real-time scenarios. Despite advantages such as high temporal resolution and low energy consumption, the application of event data faces challenges due to limited dataset size and diversity. To address this, we developed EventZoom -- a data augmentation strategy specifically designed for event data. EventZoom employs a progressive temporal strategy that intelligently blends time and space to enhance the diversity and complexity of the data while maintaining its authenticity. This method aims to improve the quality of data for model training and enhance the adaptability and robustness of algorithms in handling complex dynamic scenes. We have experimentally validated EventZoom across various supervised learning frameworks, including supervised, semi-supervised, and unsupervised learning. Our results demonstrate that EventZoom consistently outperforms other data augmentation methods, confirming its effectiveness and applicability as a powerful event-based data augmentation tool in diverse learning settings.
The recent advancement of generative foundational models has ushered in a new era of image generation in the realm of natural images, revolutionizing art design, entertainment, environment simulation, and beyond. Despite producing high-quality samples, existing methods are constrained to generating images of scenes at a limited scale. In this paper, we present MetaEarth, a generative foundation model that breaks the barrier by scaling image generation to a global level, exploring the creation of worldwide, multi-resolution, unbounded, and virtually limitless remote sensing images. In MetaEarth, we propose a resolution-guided self-cascading generative framework, which enables the generating of images at any region with a wide range of geographical resolutions. To achieve unbounded and arbitrary-sized image generation, we design a novel noise sampling strategy for denoising diffusion models by analyzing the generation conditions and initial noise. To train MetaEarth, we construct a large dataset comprising multi-resolution optical remote sensing images with geographical information. Experiments have demonstrated the powerful capabilities of our method in generating global-scale images. Additionally, the MetaEarth serves as a data engine that can provide high-quality and rich training data for downstream tasks. Our model opens up new possibilities for constructing generative world models by simulating Earth visuals from an innovative overhead perspective.
While large multi-modal models (LMMs) have exhibited impressive capabilities across diverse tasks, their effectiveness in handling complex tasks has been limited by the prevailing single-step reasoning paradigm. To this end, this paper proposes VoCoT, a multi-step Visually grounded object-centric Chain-of-Thought reasoning framework tailored for inference with LMMs. VoCoT is characterized by two key features: (1) object-centric reasoning paths that revolve around cross-modal shared object-level information, and (2) visually grounded representation of object concepts in a multi-modal interleaved and aligned manner, which effectively bridges the modality gap within LMMs during long-term generation. Additionally, we construct an instruction dataset to facilitate LMMs in adapting to reasoning with VoCoT. By introducing VoCoT into the prevalent open-source LMM architecture, we introduce VolCano. With only 7B parameters and limited input resolution, VolCano demonstrates excellent performance across various scenarios, surpassing SOTA models, including GPT-4V, in tasks requiring complex reasoning. Our code, data and model will be available at //github.com/RupertLuo/VoCoT.
The pre-trained point cloud model based on Masked Point Modeling (MPM) has exhibited substantial improvements across various tasks. However, these models heavily rely on the Transformer, leading to quadratic complexity and limited decoder, hindering their practice application. To address this limitation, we first conduct a comprehensive analysis of existing Transformer-based MPM, emphasizing the idea that redundancy reduction is crucial for point cloud analysis. To this end, we propose a Locally constrained Compact point cloud Model (LCM) consisting of a locally constrained compact encoder and a locally constrained Mamba-based decoder. Our encoder replaces self-attention with our local aggregation layers to achieve an elegant balance between performance and efficiency. Considering the varying information density between masked and unmasked patches in the decoder inputs of MPM, we introduce a locally constrained Mamba-based decoder. This decoder ensures linear complexity while maximizing the perception of point cloud geometry information from unmasked patches with higher information density. Extensive experimental results show that our compact model significantly surpasses existing Transformer-based models in both performance and efficiency, especially our LCM-based Point-MAE model, compared to the Transformer-based model, achieved an improvement of 2.24%, 0.87%, and 0.94% in performance on the three variants of ScanObjectNN while reducing parameters by 88% and computation by 73%.
Research on multi-view stereo based on remote sensing images has promoted the development of large-scale urban 3D reconstruction. However, remote sensing multi-view image data suffers from the problems of occlusion and uneven brightness between views during acquisition, which leads to the problem of blurred details in depth estimation. To solve the above problem, we re-examine the deformable learning method in the Multi-View Stereo task and propose a novel paradigm based on view Space and Depth deformable Learning (SDL-MVS), aiming to learn deformable interactions of features in different view spaces and deformably model the depth ranges and intervals to enable high accurate depth estimation. Specifically, to solve the problem of view noise caused by occlusion and uneven brightness, we propose a Progressive Space deformable Sampling (PSS) mechanism, which performs deformable learning of sampling points in the 3D frustum space and the 2D image space in a progressive manner to embed source features to the reference feature adaptively. To further optimize the depth, we introduce Depth Hypothesis deformable Discretization (DHD), which achieves precise positioning of the depth prior by adaptively adjusting the depth range hypothesis and performing deformable discretization of the depth interval hypothesis. Finally, our SDL-MVS achieves explicit modeling of occlusion and uneven brightness faced in multi-view stereo through the deformable learning paradigm of view space and depth, achieving accurate multi-view depth estimation. Extensive experiments on LuoJia-MVS and WHU datasets show that our SDL-MVS reaches state-of-the-art performance. It is worth noting that our SDL-MVS achieves an MAE error of 0.086, an accuracy of 98.9% for <0.6m, and 98.9% for <3-interval on the LuoJia-MVS dataset under the premise of three views as input.
Drag-based image editing using generative models provides precise control over image contents, enabling users to manipulate anything in an image with a few clicks. However, prevailing methods typically adopt $n$-step iterations for latent semantic optimization to achieve drag-based image editing, which is time-consuming and limits practical applications. In this paper, we introduce a novel one-step drag-based image editing method, i.e., FastDrag, to accelerate the editing process. Central to our approach is a latent warpage function (LWF), which simulates the behavior of a stretched material to adjust the location of individual pixels within the latent space. This innovation achieves one-step latent semantic optimization and hence significantly promotes editing speeds. Meanwhile, null regions emerging after applying LWF are addressed by our proposed bilateral nearest neighbor interpolation (BNNI) strategy. This strategy interpolates these regions using similar features from neighboring areas, thus enhancing semantic integrity. Additionally, a consistency-preserving strategy is introduced to maintain the consistency between the edited and original images by adopting semantic information from the original image, saved as key and value pairs in self-attention module during diffusion inversion, to guide the diffusion sampling. Our FastDrag is validated on the DragBench dataset, demonstrating substantial improvements in processing time over existing methods, while achieving enhanced editing performance.
Machine unlearning is a promising paradigm for removing unwanted data samples from a trained model, towards ensuring compliance with privacy regulations and limiting harmful biases. Although unlearning has been shown in, e.g., classification and recommendation systems, its potential in medical image-to-image translation, specifically in image recon-struction, has not been thoroughly investigated. This paper shows that machine unlearning is possible in MRI tasks and has the potential to benefit for bias removal. We set up a protocol to study how much shared knowledge exists between datasets of different organs, allowing us to effectively quantify the effect of unlearning. Our study reveals that combining training data can lead to hallucinations and reduced image quality in the reconstructed data. We use unlearning to remove hallucinations as a proxy exemplar of undesired data removal. Indeed, we show that machine unlearning is possible without full retraining. Furthermore, our observations indicate that maintaining high performance is feasible even when using only a subset of retain data. We have made our code publicly accessible.
We introduce YOSO, a novel generative model designed for rapid, scalable, and high-fidelity one-step image synthesis. YOSO integrates the diffusion process with GANs to achieve the best of two worlds. Specifically, we smooth the distribution by the denoising generator itself, performing self-cooperative learning. We show that our method can serve as a one-step generation model training from scratch with competitive performance. Moreover, we show that our method can be extended to finetune pre-trained text-to-image diffusion for high-quality one-step text-to-image synthesis even with LoRA fine-tuning. In particular, we provide the first diffusion transformer that can generate images in one step trained on 512 resolution, with the capability of adapting to 1024 resolution without extra explicit training. Our code is provided at //github.com/Luo-Yihong/YOSO