亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We merge computational mechanics' definition of causal states (predictively-equivalent histories) with reproducing-kernel Hilbert space (RKHS) representation inference. The result is a widely-applicable method that infers causal structure directly from observations of a system's behaviors whether they are over discrete or continuous events or time. A structural representation -- a finite- or infinite-state kernel $\epsilon$-machine -- is extracted by a reduced-dimension transform that gives an efficient representation of causal states and their topology. In this way, the system dynamics are represented by a stochastic (ordinary or partial) differential equation that acts on causal states. We introduce an algorithm to estimate the associated evolution operator. Paralleling the Fokker-Plank equation, it efficiently evolves causal-state distributions and makes predictions in the original data space via an RKHS functional mapping. We demonstrate these techniques, together with their predictive abilities, on discrete-time, discrete-value infinite Markov-order processes generated by finite-state hidden Markov models with (i) finite or (ii) uncountably-infinite causal states and (iii) continuous-time, continuous-value processes generated by thermally-driven chaotic flows. The method robustly estimates causal structure in the presence of varying external and measurement noise levels and for very high dimensional data.

相關內容

We study the convergence of random iterative sequence of a family of operators on infinite dimensional Hilbert spaces, which are inspired by the Stochastic Gradient Descent (SGD) algorithm in the case of the noiseless regression, as studied in [1]. We demonstrate that its polynomial convergence rate depends on the initial state, while the randomness plays a role only in the choice of the best constant factor and we close the gap between the upper and lower bounds.

The scattering of electromagnetic waves from obstacles with wave-material interaction in thin layers on the surface is described by generalized impedance boundary conditions, which provide effective approximate models. In particular, this includes a thin coating around a perfect conductor and the skin effect of a highly conducting material. The approach taken in this work is to derive, analyse and discretize a system of time-dependent boundary integral equations that determines the tangential traces of the scattered electric and magnetic fields. In a familiar second step, the fields are evaluated in the exterior domain by a representation formula, which uses the time-dependent potential operators of Maxwell's equations. The time-dependent boundary integral equationis discretized with Runge--Kutta based convolution quadrature in time and Raviart--Thomas boundary elements in space. Using the frequency-explicit bounds from the well-posedness analysis given here together with known approximation properties of the numerical methods, the full discretization is proved to be stable and convergent, with explicitly given rates in the case of sufficient regularity. Taking the same Runge--Kutta based convolution quadrature for discretizing the time-dependent representation formulas, the optimal order of convergence is obtained away from the scattering boundary, whereas an order reduction occurs close to the boundary. The theoretical results are illustrated by numerical experiments.

Traditionally, spline or kernel approaches in combination with parametric estimation are used to infer the linear coefficient (fixed effects) in a partially linear mixed-effects model for repeated measurements. Using machine learning algorithms allows us to incorporate complex interaction structures and high-dimensional variables. We employ double machine learning to cope with the nonparametric part of the partially linear mixed-effects model: the nonlinear variables are regressed out nonparametrically from both the linear variables and the response. This adjustment can be performed with any machine learning algorithm, for instance random forests, which allows to take complex interaction terms and nonsmooth structures into account. The adjusted variables satisfy a linear mixed-effects model, where the linear coefficient can be estimated with standard linear mixed-effects techniques. We prove that the estimated fixed effects coefficient converges at the parametric rate, is asymptotically Gaussian distributed, and semiparametrically efficient. Two simulation studies demonstrate that our method outperforms a penalized regression spline approach in terms of coverage. We also illustrate our proposed approach on a longitudinal dataset with HIV-infected individuals. Software code for our method is available in the R-package dmlalg.

We are interested in the problem of learning the directed acyclic graph (DAG) when data are generated from a linear structural equation model (SEM) and the causal structure can be characterized by a polytree. Under the Gaussian polytree models, we study sufficient conditions on the sample sizes for the well-known Chow-Liu algorithm to exactly recover both the skeleton and the equivalence class of the polytree, which is uniquely represented by a CPDAG. On the other hand, necessary conditions on the required sample sizes for both skeleton and CPDAG recovery are also derived in terms of information-theoretic lower bounds, which match the respective sufficient conditions and thereby give a sharp characterization of the difficulty of these tasks. We also consider extensions to the sub-Gaussian case, and then study the estimation of the inverse correlation matrix under such models. Our theoretical findings are illustrated by comprehensive numerical simulations, and experiments on benchmark data also demonstrate the robustness of polytree learning when the true graphical structures can only be approximated by polytrees.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

Many important real-world problems have action spaces that are high-dimensional, continuous or both, making full enumeration of all possible actions infeasible. Instead, only small subsets of actions can be sampled for the purpose of policy evaluation and improvement. In this paper, we propose a general framework to reason in a principled way about policy evaluation and improvement over such sampled action subsets. This sample-based policy iteration framework can in principle be applied to any reinforcement learning algorithm based upon policy iteration. Concretely, we propose Sampled MuZero, an extension of the MuZero algorithm that is able to learn in domains with arbitrarily complex action spaces by planning over sampled actions. We demonstrate this approach on the classical board game of Go and on two continuous control benchmark domains: DeepMind Control Suite and Real-World RL Suite.

Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

The aim of this paper is to offer the first systematic exploration and definition of equivalent causal models in the context where both models are not made up of the same variables. The idea is that two models are equivalent when they agree on all "essential" causal information that can be expressed using their common variables. I do so by focussing on the two main features of causal models, namely their structural relations and their functional relations. In particular, I define several relations of causal ancestry and several relations of causal sufficiency, and require that the most general of these relations are preserved across equivalent models.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司