亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Regression is one of the most commonly used statistical techniques. However, testing regression systems is a great challenge because of the absence of test oracle in general. In this paper, we show that Metamorphic Testing is an effective approach to test multiple linear regression systems. In doing so, we identify intrinsic mathematical properties of linear regression, and then propose 11 Metamorphic Relations to be used for testing. Their effectiveness is examined using mutation analysis with a range of different regression programs. We further look at how the testing could be adopted in a more effective way. Our work is applicable to examine the reliability of predictive systems based on regression that has been widely used in economics, engineering and science, as well as of the regression calculation manipulated by statistical users.

相關內容

 線性回歸是利用數理統計中回歸分析,來確定兩種或兩種以上變量間相互依賴的定量關系的一種統計分析方法,運用十分廣泛。其表達形式為y = w'x+e,e為誤差服從均值為0的正態分布。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Continuous integration testing is an important step in the modern software engineering life cycle. Test prioritization is a method that can improve the efficiency of continuous integration testing by selecting test cases that can detect faults in the early stage of each cycle. As continuous integration testing produces voluminous test execution data, test history is a commonly used artifact in test prioritization. However, existing test prioritization techniques for continuous integration either cannot handle large test history or are optimized for using a limited number of historical test cycles. We show that such a limitation can decrease fault detection effectiveness of prioritized test suites. This work introduces DeepOrder, a deep learning-based model that works on the basis of regression machine learning. DeepOrder ranks test cases based on the historical record of test executions from any number of previous test cycles. DeepOrder learns failed test cases based on multiple factors including the duration and execution status of test cases. We experimentally show that deep neural networks, as a simple regression model, can be efficiently used for test case prioritization in continuous integration testing. DeepOrder is evaluated with respect to time-effectiveness and fault detection effectiveness in comparison with an industry practice and the state of the art approaches. The results show that DeepOrder outperforms the industry practice and state-of-the-art test prioritization approaches in terms of these two metrics.

Federated learning (FL) literature typically assumes that each client has a fixed amount of data, which is unrealistic in many practical applications. Some recent works introduced a framework for online FL (Online-Fed) wherein clients perform model learning on streaming data and communicate the model to the server; however, they do not address the associated communication overhead. As a solution, this paper presents a partial-sharing-based online federated learning framework (PSO-Fed) that enables clients to update their local models using continuous streaming data and share only portions of those updated models with the server. During a global iteration of PSO-Fed, non-participant clients have the privilege to update their local models with new data. Here, we consider a global task of kernel regression, where clients use a random Fourier features-based kernel LMS on their data for local learning. We examine the mean convergence of the PSO-Fed for kernel regression. Experimental results show that PSO-Fed can achieve competitive performance with a significantly lower communication overhead than Online-Fed.

Kernel-based schemes are state-of-the-art techniques for learning by data. In this work we extend some ideas about kernel-based greedy algorithms to exponential-polynomial splines, whose main drawback consists in possible overfitting and consequent oscillations of the approximant. To partially overcome this issue, we introduce two algorithms which perform an adaptive selection of the spline interpolation points based on the minimization either of the sample residuals ($f$-greedy), or of an upper bound for the approximation error based on the spline Lebesgue function ($\lambda$-greedy). Both methods allow us to obtain an adaptive selection of the sampling points, i.e. the spline nodes. However, while the {$f$-greedy} selection is tailored to one specific target function, the $\lambda$-greedy algorithm is independent of the function values and enables us to define a priori optimal interpolation nodes.

Recent demand for distributed software had led to a surge in popularity in actor-based frameworks. However, even with the stylized message passing model of actors, writing correct distributed software is still difficult. We present our work on linearizability checking in DS2, an integrated framework for specifying, synthesizing, and testing distributed actor systems. The key insight of our approach is that often subcomponents of distributed actor systems represent common algorithms or data structures (e.g.\ a distributed hash table or tree) that can be validated against a simple sequential model of the system. This makes it easy for developers to validate their concurrent actor systems without complex specifications. DS2 automatically explores the concurrent schedules that system could arrive at, and it compares observed output of the system to ensure it is equivalent to what the sequential implementation could have produced. We describe DS2's linearizability checking and test it on several concurrent replication algorithms from the literature. We explore in detail how different algorithms for enumerating the model schedule space fare in finding bugs in actor systems, and we present our own refinements on algorithms for exploring actor system schedules that we show are effective in finding bugs.

A fundamental concept in control theory is that of controllability, where any system state can be reached through an appropriate choice of control inputs. Indeed, a large body of classical and modern approaches are designed for controllable linear dynamical systems. However, in practice, we often encounter systems in which a large set of state variables evolve exogenously and independently of the control inputs; such systems are only \emph{partially controllable}. The focus of this work is on a large class of partially controllable linear dynamical systems, specified by an underlying sparsity pattern. Our main results establish structural conditions and finite-sample guarantees for learning to control such systems. In particular, our structural results characterize those state variables which are irrelevant for optimal control, an analysis which departs from classical control techniques. Our algorithmic results adapt techniques from high-dimensional statistics -- specifically soft-thresholding and semiparametric least-squares -- to exploit the underlying sparsity pattern in order to obtain finite-sample guarantees that significantly improve over those based on certainty-equivalence. We also corroborate these theoretical improvements over certainty-equivalent control through a simulation study.

Scoring rules aggregate individual rankings by assigning some points to each position in each ranking such that the total sum of points provides the overall ranking of the alternatives. They are widely used in sports competitions consisting of multiple contests. We study the tradeoff between two risks in this setting: (1) the threat of early clinch when the title has been clinched before the last contest(s) of the competition take place; (2) the danger of winning the competition without finishing first in any contest. In particular, four historical points scoring systems of the Formula One World Championship are compared with the family of geometric scoring rules, recently proposed by an axiomatic approach. The schemes used in practice are found to be competitive with respect to these goals, and the current rule seems to be a reasonable compromise close to the Pareto frontier. Our results shed more light on the evolution of the Formula One points scoring systems and contribute to the issue of choosing the set of point values.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.

Model-based methods for recommender systems have been studied extensively in recent years. In systems with large corpus, however, the calculation cost for the learnt model to predict all user-item preferences is tremendous, which makes full corpus retrieval extremely difficult. To overcome the calculation barriers, models such as matrix factorization resort to inner product form (i.e., model user-item preference as the inner product of user, item latent factors) and indexes to facilitate efficient approximate k-nearest neighbor searches. However, it still remains challenging to incorporate more expressive interaction forms between user and item features, e.g., interactions through deep neural networks, because of the calculation cost. In this paper, we focus on the problem of introducing arbitrary advanced models to recommender systems with large corpus. We propose a novel tree-based method which can provide logarithmic complexity w.r.t. corpus size even with more expressive models such as deep neural networks. Our main idea is to predict user interests from coarse to fine by traversing tree nodes in a top-down fashion and making decisions for each user-node pair. We also show that the tree structure can be jointly learnt towards better compatibility with users' interest distribution and hence facilitate both training and prediction. Experimental evaluations with two large-scale real-world datasets show that the proposed method significantly outperforms traditional methods. Online A/B test results in Taobao display advertising platform also demonstrate the effectiveness of the proposed method in production environments.

北京阿比特科技有限公司