亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The growth of ridehailing (RH) companies over the past few years has affected urban mobility in numerous ways. Despite widespread claims about the benefits of such services, limited research has been conducted on the topic. This paper assesses the willingness of Munich transportation users to pay for RH services. Realizing the difficulty of obtaining data directly from RH companies, a stated preference survey was designed. The dataset includes responses from 500 commuters. Sociodemographic attributes, current travel behavior and transportation mode preference in an 8 km trip scenario using RH service and its similar modes (auto and transit), were collected. A multinomial logit model was used to estimate the time and cost coefficients for using RH services across income groups, which was then used to estimate the value of time (VOT) for RH. The model results indicate RH services popularity among those aged 18 to 39, larger households and households with fewer autos. Higher income groups are also willing to pay more for using RH services. To examine the impact of RH services on modal split in the city of Munich, we incorporated RH as a new mode into an existing nested logit mode choice model using an incremental logit. Travel time, travel cost and VOT were used as measures for the choice commuters make when choosing between RH and its closest mode, metro. A total of 20 scenarios were evaluated at four different congestion levels and four price levels to reflect the demand in response to acceptable costs and time tradeoffs.

相關內容

In this paper, we study learning in probabilistic domains where the learner may receive incorrect labels but can improve the reliability of labels by repeatedly sampling them. In such a setting, one faces the problem of whether the fixed budget for obtaining training examples should rather be used for obtaining all different examples or for improving the label quality of a smaller number of examples by re-sampling their labels. We motivate this problem in an application to compare the strength of poker hands where the training signal depends on the hidden community cards, and then study it in depth in an artificial setting where we insert controlled noise levels into the MNIST database. Our results show that with increasing levels of noise, resampling previous examples becomes increasingly more important than obtaining new examples, as classifier performance deteriorates when the number of incorrect labels is too high. In addition, we propose two different validation strategies; switching from lower to higher validations over the course of training and using chi-square statistics to approximate the confidence in obtained labels.

Since 2010, the output of a risk assessment tool that predicts how likely an individual is to commit severe violence against their partner has been integrated within the Basque country courtrooms. The EPV-R, the tool developed to assist police officers during the assessment of gender-based violence cases, was also incorporated to assist the decision-making of judges. With insufficient training, judges are exposed to an algorithmic output that influences the human decision of adopting measures in cases of gender-based violence. In this paper, we examine the risks, harms and limits of algorithmic governance within the context of gender-based violence. Through the lens of an Spanish judge exposed to this tool, we analyse how the EPV-R is impacting on the justice system. Moving beyond the risks of unfair and biased algorithmic outputs, we examine legal, social and technical pitfalls such as opaque implementation, efficiency's paradox and feedback loop, that could led to unintended consequences on women who suffer gender-based violence. Our interdisciplinary framework highlights the importance of understanding the impact and influence of risk assessment tools within judicial decision-making and increase awareness about its implementation in this context.

Machine learning and computational intelligence technologies gain more and more popularity as possible solution for issues related to the power grid. One of these issues, the power flow calculation, is an iterative method to compute the voltage magnitudes of the power grid's buses from power values. Machine learning and, especially, artificial neural networks were successfully used as surrogates for the power flow calculation. Artificial neural networks highly rely on the quality and size of the training data, but this aspect of the process is apparently often neglected in the works we found. However, since the availability of high quality historical data for power grids is limited, we propose the Correlation Sampling algorithm. We show that this approach is able to cover a larger area of the sampling space compared to different random sampling algorithms from the literature and a copula-based approach, while at the same time inter-dependencies of the inputs are taken into account, which, from the other algorithms, only the copula-based approach does.

Planners require accurate demand forecasts when optimising offers to maximise revenue on network products, such as railway itineraries. However, network effects complicate demand forecasting in general and outlier detection in particular. For example, sudden increases in demand for a specific destination in a transportation network not only affect legs arriving at that destination, but also their feeder legs. Network effects are particularly relevant when transport service providers, such as railway or coach companies, offer many multi-leg itineraries. In this paper, we present a novel method for generating automated ranked outlier lists to support analysts in adjusting demand forecasts. To that end, we propose a two-step method for detecting outlying demand from transportation network bookings. The first step clusters network legs to appropriately partition and pool booking patterns. The second step identifies outliers within each cluster and creates a ranked alert list of affected legs. We show that this method outperforms analyses that independently consider leg data without regard for network implications, especially in highly-connected networks where most passengers book multi-leg itineraries. A simulation study demonstrates the robustness of the approach and quantifies the potential revenue benefits from adjusting network demand forecasts for offer optimisation. Finally, we illustrate the applicability on empirical data obtained from Deutsche Bahn.

In this work, we develop quantization and variable-length source codecs for the feedback links in linear-quadratic-Gaussian (LQG) control systems. We prove that for any fixed control performance, the approaches we propose nearly achieve lower bounds on communication cost that have been established in prior work. In particular, we refine the analysis of a classical achievability approach with an eye towards more practical details. Notably, in the prior literature the source codecs used to demonstrate the (near) achievability of these lower bounds are often implicitly assumed to be time-varying. For single-input single-output (SISO) plants, we prove that it suffices to consider time-invariant quantization and source coding. This result follows from analyzing the long-term stochastic behavior of the system's quantized measurements and reconstruction errors. To our knowledge, this time-invariant achievability result is the first in the literature.

The notion of "in-domain data" in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

北京阿比特科技有限公司