There are synergies of research interests and industrial efforts in modeling fairness and correcting algorithmic bias in machine learning. In this paper, we present a scalable algorithm for spectral clustering (SC) with group fairness constraints. Group fairness is also known as statistical parity where in each cluster, each protected group is represented with the same proportion as in the entirety. While FairSC algorithm (Kleindessner et al., 2019) is able to find the fairer clustering, it is compromised by high costs due to the kernels of computing nullspaces and the square roots of dense matrices explicitly. We present a new formulation of underlying spectral computation by incorporating nullspace projection and Hotelling's deflation such that the resulting algorithm, called s-FairSC, only involves the sparse matrix-vector products and is able to fully exploit the sparsity of the fair SC model. The experimental results on the modified stochastic block model demonstrate that s-FairSC is comparable with FairSC in recovering fair clustering. Meanwhile, it is sped up by a factor of 12 for moderate model sizes. s-FairSC is further demonstrated to be scalable in the sense that the computational costs of s-FairSC only increase marginally compared to the SC without fairness constraints.
Graph representation learning models have been deployed for making decisions in multiple high-stakes scenarios. It is therefore critical to ensure that these models are fair. Prior research has shown that graph neural networks can inherit and reinforce the bias present in graph data. Researchers have begun to examine ways to mitigate the bias in such models. However, existing efforts are restricted by their inefficiency, limited applicability, and the constraints they place on sensitive attributes. To address these issues, we present FairMILE a general framework for fair and scalable graph representation learning. FairMILE is a multi-level framework that allows contemporary unsupervised graph embedding methods to scale to large graphs in an agnostic manner. FairMILE learns both fair and high-quality node embeddings where the fairness constraints are incorporated in each phase of the framework. Our experiments across two distinct tasks demonstrate that FairMILE can learn node representations that often achieve superior fairness scores and high downstream performance while significantly outperforming all the baselines in terms of efficiency.
Ensuring fairness in machine learning algorithms is a challenging and essential task. We consider the problem of clustering a set of points while satisfying fairness constraints. While there have been several attempts to capture group fairness in the $k$-clustering problem, fairness at an individual level is relatively less explored. We introduce a new notion of individual fairness in $k$-clustering based on features not necessarily used for clustering. We show that this problem is NP-hard and does not admit a constant factor approximation. Therefore, we design a randomized algorithm that guarantees approximation both in terms of minimizing the clustering distance objective and individual fairness under natural restrictions on the distance metric and fairness constraints. Finally, our experimental results against six competing baselines validate that our algorithm produces individually fairer clusters than the fairest baseline by 12.5% on average while also being less costly in terms of the clustering objective than the best baseline by 34.5% on average.
We study the fundamental problem of selecting optimal features for model construction. This problem is computationally challenging on large datasets, even with the use of greedy algorithm variants. To address this challenge, we extend the adaptive query model, recently proposed for the greedy forward selection for submodular functions, to the faster paradigm of Orthogonal Matching Pursuit for non-submodular functions. The proposed algorithm achieves exponentially fast parallel run time in the adaptive query model, scaling much better than prior work. Furthermore, our extension allows the use of downward-closed constraints, which can be used to encode certain fairness criteria into the feature selection process. We prove strong approximation guarantees for the algorithm based on standard assumptions. These guarantees are applicable to many parametric models, including Generalized Linear Models. Finally, we demonstrate empirically that the proposed algorithm competes favorably with state-of-the-art techniques for feature selection, on real-world and synthetic datasets.
We analyze a practical algorithm for sparse PCA on incomplete and noisy data under a general non-random sampling scheme. The algorithm is based on a semidefinite relaxation of the $\ell_1$-regularized PCA problem. We provide theoretical justification that under certain conditions, we can recover the support of the sparse leading eigenvector with high probability by obtaining a unique solution. The conditions involve the spectral gap between the largest and second-largest eigenvalues of the true data matrix, the magnitude of the noise, and the structural properties of the observed entries. The concepts of algebraic connectivity and irregularity are used to describe the structural properties of the observed entries. We empirically justify our theorem with synthetic and real data analysis. We also show that our algorithm outperforms several other sparse PCA approaches especially when the observed entries have good structural properties. As a by-product of our analysis, we provide two theorems to handle a deterministic sampling scheme, which can be applied to other matrix-related problems.
The problem of String Matching to Labeled Graphs (SMLG) asks to find all the paths in a labeled graph $G = (V, E)$ whose spellings match that of an input string $S \in \Sigma^m$. SMLG can be solved in quadratic $O(m|E|)$ time [Amir et al., JALG], which was proven to be optimal by a recent lower bound conditioned on SETH [Equi et al., ICALP 2019]. The lower bound states that no strongly subquadratic time algorithm exists, even if restricted to directed acyclic graphs (DAGs). In this work we present the first parameterized algorithms for SMLG in DAGs. Our parameters capture the topological structure of $G$. All our results are derived from a generalization of the Knuth-Morris-Pratt algorithm [Park and Kim, CPM 1995] optimized to work in time proportional to the number of prefix-incomparable matches. To obtain the parameterization in the topological structure of $G$, we first study a special class of DAGs called funnels [Millani et al., JCO] and generalize them to $k$-funnels and the class $ST_k$. We present several novel characterizations and algorithmic contributions on both funnels and their generalizations.
With the explosive growth of information technology, multi-view graph data have become increasingly prevalent and valuable. Most existing multi-view clustering techniques either focus on the scenario of multiple graphs or multi-view attributes. In this paper, we propose a generic framework to cluster multi-view attributed graph data. Specifically, inspired by the success of contrastive learning, we propose multi-view contrastive graph clustering (MCGC) method to learn a consensus graph since the original graph could be noisy or incomplete and is not directly applicable. Our method composes of two key steps: we first filter out the undesirable high-frequency noise while preserving the graph geometric features via graph filtering and obtain a smooth representation of nodes; we then learn a consensus graph regularized by graph contrastive loss. Results on several benchmark datasets show the superiority of our method with respect to state-of-the-art approaches. In particular, our simple approach outperforms existing deep learning-based methods.
Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.
Graph convolution networks (GCN) are increasingly popular in many applications, yet remain notoriously hard to train over large graph datasets. They need to compute node representations recursively from their neighbors. Current GCN training algorithms suffer from either high computational costs that grow exponentially with the number of layers, or high memory usage for loading the entire graph and node embeddings. In this paper, we propose a novel efficient layer-wise training framework for GCN (L-GCN), that disentangles feature aggregation and feature transformation during training, hence greatly reducing time and memory complexities. We present theoretical analysis for L-GCN under the graph isomorphism framework, that L-GCN leads to as powerful GCNs as the more costly conventional training algorithm does, under mild conditions. We further propose L^2-GCN, which learns a controller for each layer that can automatically adjust the training epochs per layer in L-GCN. Experiments show that L-GCN is faster than state-of-the-arts by at least an order of magnitude, with a consistent of memory usage not dependent on dataset size, while maintaining comparable prediction performance. With the learned controller, L^2-GCN can further cut the training time in half. Our codes are available at //github.com/Shen-Lab/L2-GCN.
The area of Data Analytics on graphs promises a paradigm shift as we approach information processing of classes of data, which are typically acquired on irregular but structured domains (social networks, various ad-hoc sensor networks). Yet, despite its long history, current approaches mostly focus on the optimization of graphs themselves, rather than on directly inferring learning strategies, such as detection, estimation, statistical and probabilistic inference, clustering and separation from signals and data acquired on graphs. To fill this void, we first revisit graph topologies from a Data Analytics point of view, and establish a taxonomy of graph networks through a linear algebraic formalism of graph topology (vertices, connections, directivity). This serves as a basis for spectral analysis of graphs, whereby the eigenvalues and eigenvectors of graph Laplacian and adjacency matrices are shown to convey physical meaning related to both graph topology and higher-order graph properties, such as cuts, walks, paths, and neighborhoods. Next, to illustrate estimation strategies performed on graph signals, spectral analysis of graphs is introduced through eigenanalysis of mathematical descriptors of graphs and in a generic way. Finally, a framework for vertex clustering and graph segmentation is established based on graph spectral representation (eigenanalysis) which illustrates the power of graphs in various data association tasks. The supporting examples demonstrate the promise of Graph Data Analytics in modeling structural and functional/semantic inferences. At the same time, Part I serves as a basis for Part II and Part III which deal with theory, methods and applications of processing Data on Graphs and Graph Topology Learning from data.
Knowledge graphs capture interlinked information between entities and they represent an attractive source of structured information that can be harnessed for recommender systems. However, existing recommender engines use knowledge graphs by manually designing features, do not allow for end-to-end training, or provide poor scalability. Here we propose Knowledge Graph Convolutional Networks (KGCN), an end-to-end trainable framework that harnesses item relationships captured by the knowledge graph to provide better recommendations. Conceptually, KGCN computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relations for a given user and then transforming the knowledge graph into a user-specific weighted graph. Then, KGCN applies a graph convolutional neural network that computes an embedding of an item node by propagating and aggregating knowledge graph neighborhood information. Moreover, to provide better inductive bias KGCN uses label smoothness (LS), which provides regularization over edge weights and we prove that it is equivalent to label propagation scheme on a graph. Finally, We unify KGCN and LS regularization, and present a scalable minibatch implementation for KGCN-LS model. Experiments show that KGCN-LS outperforms strong baselines in four datasets. KGCN-LS also achieves great performance in sparse scenarios and is highly scalable with respect to the knowledge graph size.