In this paper, we present a new computer-controlled weaving technology that enables the fabrication of woven structures in the shape of given 3D surfaces by using threads in non-traditional materials with high bending-stiffness, allowing for multiple applications with the resultant woven fabrics. A new weaving machine and a new manufacturing process are developed to realize the function of 3D surface weaving by the principle of short-row shaping. A computational solution is investigated to convert input 3D freeform surfaces into the corresponding weaving operations (indicated as W-code) to guide the operation of this system. A variety of examples using cotton threads, conductive threads and optical fibres are fabricated by our prototype system to demonstrate its functionality.
In this paper, we explore the integration of two revolutionary technologies, reconfigurable intelligent surfaces (RISs) and orthogonal time frequency space (OTFS) modulation, to enhance high-speed wireless communications. We introduce a novel phase shift design algorithm for RIS-assisted OTFS, optimizing energy reception and channel gain in dynamic environments. The study evaluates the proposed approach in a downlink scenario, demonstrating significant performance improvements compared to benchmark schemes in the literature, particularly in terms of bit error rate (BER). Our results showcase the potential of RIS to enhance the system's performance. Specifically, our proposed phase shift design technique outperforms the benchmark solutions by over 4 dB. Furthermore, even greater gains can be obtained as the number of RIS elements increases.
In this paper, we investigate the millimeter-wave (mmWave) near-field beam training problem to find the correct beam direction. In order to address the high complexity and low identification accuracy of existing beam training techniques, we propose an efficient hashing multi-arm beam (HMB) training scheme for the near-field scenario. Specifically, we first design a set of sparse bases based on the polar domain sparsity of the near-field channel. Then, the random hash functions are chosen to construct the near-field multi-arm beam training codebook. Each multi-arm beam codeword is scanned in a time slot until all the predefined codewords are traversed. Finally, the soft decision and voting methods are applied to distinguish the signal from different base stations and obtain correctly aligned beams. Simulation results show that our proposed near-field HMB training method can reduce the beam training overhead to the logarithmic level, and achieve 96.4% identification accuracy of exhaustive beam training. Moreover, we also verify applicability under the far-field scenario.
In this paper, we investigate the beam training problem in the multi-user millimeter wave (mmWave) communication system, where multiple reconfigurable intelligent surfaces (RISs) are deployed to improve the coverage and the achievable rate. However, existing beam training techniques in mmWave systems suffer from the high complexity (i.e., exponential order) and low identification accuracy. To address these problems, we propose a novel hashing multi-arm beam (HMB) training scheme that reduces the training complexity to the logarithmic order with the high accuracy. Specifically, we first design a generation mechanism for HMB codebooks. Then, we propose a demultiplexing algorithm based on the soft decision to distinguish signals from different RIS reflective links. Finally, we utilize a multi-round voting mechanism to align the beams. Simulation results show that the proposed HMB training scheme enables simultaneous training for multiple RISs and multiple users, and reduces the beam training overhead to the logarithmic level. Moreover, it also shows that our proposed scheme can significantly improve the identification accuracy by at least 20% compared to existing beam training techniques.
In this paper, we present a method for enhancing the accuracy of scene text recognition tasks by judging whether the image and text match each other. While previous studies focused on generating the recognition results from input images, our approach also considers the model's misrecognition results to understand its error tendencies, thus improving the text recognition pipeline. This method boosts text recognition accuracy by providing explicit feedback on the data that the model is likely to misrecognize by predicting correct or incorrect between the image and text. The experimental results on publicly available datasets demonstrate that our proposed method outperforms the baseline and state-of-the-art methods in scene text recognition.
We propose a new continuous phase frequency shift keying that is particularly suited for multi-antenna communications when the link budget is critical and beam alignment is problematic. It combines the constant envelope of frequency modulation with low-rate repetition coding in order to compensate for the absence of transmit beamforming. Although it is a frequency modulation, its transmit signal shows close to rectangular spectral shape. Similar to GSM's Gaussian minimum shift keying, it can be well approximated by linear modulation, when combined with differential precoding. This allows for easy coherent demodulation by means of a windowed fast Fourier transform.
In this paper, we propose a set of transform-based neural network layers as an alternative to the $3\times3$ Conv2D layers in Convolutional Neural Networks (CNNs). The proposed layers can be implemented based on orthogonal transforms such as the Discrete Cosine Transform (DCT), Hadamard transform (HT), and biorthogonal Block Wavelet Transform (BWT). Furthermore, by taking advantage of the convolution theorems, convolutional filtering operations are performed in the transform domain using element-wise multiplications. Trainable soft-thresholding layers, that remove noise in the transform domain, bring nonlinearity to the transform domain layers. Compared to the Conv2D layer, which is spatial-agnostic and channel-specific, the proposed layers are location-specific and channel-specific. Moreover, these proposed layers reduce the number of parameters and multiplications significantly while improving the accuracy results of regular ResNets on the ImageNet-1K classification task. Furthermore, they can be inserted with a batch normalization layer before the global average pooling layer in the conventional ResNets as an additional layer to improve classification accuracy.
In this paper, we introduce a new functional point of view on bilevel optimization problems for machine learning, where the inner objective is minimized over a function space. These types of problems are most often solved by using methods developed in the parametric setting, where the inner objective is strongly convex with respect to the parameters of the prediction function. The functional point of view does not rely on this assumption and notably allows using over-parameterized neural networks as the inner prediction function. We propose scalable and efficient algorithms for the functional bilevel optimization problem and illustrate the benefits of our approach on instrumental regression and reinforcement learning tasks, which admit natural functional bilevel structures.
In this research, we present a novel approach to motion customization in video generation, addressing the widespread gap in the thorough exploration of motion representation within video generative models. Recognizing the unique challenges posed by video's spatiotemporal nature, our method introduces Motion Embeddings, a set of explicit, temporally coherent one-dimensional embeddings derived from a given video. These embeddings are designed to integrate seamlessly with the temporal transformer modules of video diffusion models, modulating self-attention computations across frames without compromising spatial integrity. Our approach offers a compact and efficient solution to motion representation and enables complex manipulations of motion characteristics through vector arithmetic in the embedding space. Furthermore, we identify the Temporal Discrepancy in video generative models, which refers to variations in how different motion modules process temporal relationships between frames. We leverage this understanding to optimize the integration of our motion embeddings. Our contributions include the introduction of a tailored motion embedding for customization tasks, insights into the temporal processing differences in video models, and a demonstration of the practical advantages and effectiveness of our method through extensive experiments.
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.
The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.