亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper reveals that every image can be understood as a first-order norm+linear autoregressive process, referred to as FINOLA, where norm+linear denotes the use of normalization before the linear model. We demonstrate that images of size 256$\times$256 can be reconstructed from a compressed vector using autoregression up to a 16$\times$16 feature map, followed by upsampling and convolution. This discovery sheds light on the underlying partial differential equations (PDEs) governing the latent feature space. Additionally, we investigate the application of FINOLA for self-supervised learning through a simple masked prediction technique. By encoding a single unmasked quadrant block, we can autoregressively predict the surrounding masked region. Remarkably, this pre-trained representation proves effective for image classification and object detection tasks, even in lightweight networks, without requiring fine-tuning. The code will be made publicly available.

相關內容

We investigate a framework for binary image denoising via restricted Boltzmann machines (RBMs) that introduces a denoising objective in quadratic unconstrained binary optimization (QUBO) form and is well-suited for quantum annealing. The denoising objective is attained by balancing the distribution learned by a trained RBM with a penalty term for derivations from the noisy image. We derive the statistically optimal choice of the penalty parameter assuming the target distribution has been well-approximated, and further suggest an empirically supported modification to make the method robust to that idealistic assumption. We also show under additional assumptions that the denoised images attained by our method are, in expectation, strictly closer to the noise-free images than the noisy images are. While we frame the model as an image denoising model, it can be applied to any binary data. As the QUBO formulation is well-suited for implementation on quantum annealers, we test the model on a D-Wave Advantage machine, and also test on data too large for current quantum annealers by approximating QUBO solutions through classical heuristics.

Image noise is ubiquitous in photography. However, image noise is not compressible nor desirable, thus attempting to convey the noise in compressed image bitstreams yields sub-par results in both rate and distortion. We propose to explicitly learn the image denoising task when training a codec. Therefore, we leverage the Natural Image Noise Dataset, which offers a wide variety of scenes captured with various ISO numbers, leading to different noise levels, including insignificant ones. Given this training set, we supervise the codec with noisy-clean image pairs, and show that a single model trained based on a mixture of images with variable noise levels appears to yield best-in-class results with both noisy and clean images, achieving better rate-distortion than a compression-only model or even than a pair of denoising-then-compression models with almost one order of magnitude fewer GMac operations.

Light field is a type of image data that captures the 3D scene information by recording light rays emitted from a scene at various orientations. It offers a more immersive perception than classic 2D images but at the cost of huge data volume. In this paper, we draw inspiration from the visual characteristics of Sub-Aperture Images (SAIs) of light field and design a compact neural network representation for the light field compression task. The network backbone takes randomly initialized noise as input and is supervised on the SAIs of the target light field. It is composed of two types of complementary kernels: descriptive kernels (descriptors) that store scene description information learned during training, and modulatory kernels (modulators) that control the rendering of different SAIs from the queried perspectives. To further enhance compactness of the network meanwhile retain high quality of the decoded light field, we accordingly introduce modulator allocation and kernel tensor decomposition mechanisms, followed by non-uniform quantization and lossless entropy coding techniques, to finally form an efficient compression pipeline. Extensive experiments demonstrate that our method outperforms other state-of-the-art (SOTA) methods by a significant margin in the light field compression task. Moreover, after aligning descriptors, the modulators learned from one light field can be transferred to new light fields for rendering dense views, indicating a potential solution for view synthesis task.

Vector autoregressions (VARs) have an associated order $p$; conditional on observations at the preceding $p$ time points, the variable at time $t$ is conditionally independent of all the earlier history. Learning the order of the model is therefore vital for its characterisation and subsequent use in forecasting. It is common to assume that a VAR is stationary. This prevents the predictive variance of the process from increasing without bound as the forecast horizon increases and facilitates interpretation of the relationships between variables. A VAR is stable if and only if the roots of its characteristic equation lie outside the unit circle, constraining the autoregressive coefficient matrices to lie in the stationary region. Unfortunately, the geometry of the stationary region is very complicated which impedes specification of a prior. In this work, the autoregressive coefficients are mapped to a set of transformed partial autocorrelation matrices which are unconstrained, allowing for straightforward prior specification, routine computational inference, and meaningful interpretation of the magnitude of the elements in the matrix. The multiplicative gamma process is used to build a prior for the unconstrained matrices, which encourages increasing shrinkage of the partial autocorrelation parameters as the lag increases. Identifying the lag beyond which the partial autocorrelations become equal to zero then determines the order of the process. Posterior inference is performed using Hamiltonian Monte Carlo via Stan. A truncation criterion is used to determine whether a partial autocorrelation matrix has been effectively shrunk to zero. The value of the truncation threshold is motivated by classical theory on the sampling distribution of the partial autocorrelation function. The work is applied to neural activity data in order to investigate ultradian rhythms in the brain.

Quantization is commonly used to compress and accelerate deep neural networks. Quantization assigning the same bit-width to all layers leads to large accuracy degradation at low precision and is wasteful at high precision settings. Mixed-precision quantization (MPQ) assigns varied bit-widths to layers to optimize the accuracy-efficiency trade-off. Existing methods simplify the MPQ problem by assuming that quantization errors at different layers act independently. We show that this assumption does not reflect the true behavior of quantized deep neural networks. We propose the first MPQ algorithm that captures the cross-layer dependency of quantization error. Our algorithm (CLADO) enables a fast approximation of pairwise cross-layer error terms by solving linear equations that require only forward evaluations of the network on a small amount of data. Decisions on layerwise bit-width assignments are then determined by optimizing a new MPQ formulation dependent on these cross-layer quantization errors via the Integer Quadratic Program (IQP), which can be solved within seconds. We conduct experiments on multiple networks on the Imagenet dataset and demonstrate an improvement, in top-1 classification accuracy, of up to 27% over uniform precision quantization, and up to 15% over existing MPQ methods.

We carry out an information-theoretical analysis of a two-layer neural network trained from input-output pairs generated by a teacher network with matching architecture, in overparametrized regimes. Our results come in the form of bounds relating i) the mutual information between training data and network weights, or ii) the Bayes-optimal generalization error, to the same quantities but for a simpler (generalized) linear model for which explicit expressions are rigorously known. Our bounds, which are expressed in terms of the number of training samples, input dimension and number of hidden units, thus yield fundamental performance limits for any neural network (and actually any learning procedure) trained from limited data generated according to our two-layer teacher neural network model. The proof relies on rigorous tools from spin glasses and is guided by ``Gaussian equivalence principles'' lying at the core of numerous recent analyses of neural networks. With respect to the existing literature, which is either non-rigorous or restricted to the case of the learning of the readout weights only, our results are information-theoretic (i.e. are not specific to any learning algorithm) and, importantly, cover a setting where all the network parameters are trained.

This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pre-training and shows promising scaling behavior.

Deep learning techniques have received much attention in the area of image denoising. However, there are substantial differences in the various types of deep learning methods dealing with image denoising. Specifically, discriminative learning based on deep learning can ably address the issue of Gaussian noise. Optimization models based on deep learning are effective in estimating the real noise. However, there has thus far been little related research to summarize the different deep learning techniques for image denoising. In this paper, we offer a comparative study of deep techniques in image denoising. We first classify the deep convolutional neural networks (CNNs) for additive white noisy images; the deep CNNs for real noisy images; the deep CNNs for blind denoising and the deep CNNs for hybrid noisy images, which represents the combination of noisy, blurred and low-resolution images. Then, we analyze the motivations and principles of the different types of deep learning methods. Next, we compare the state-of-the-art methods on public denoising datasets in terms of quantitative and qualitative analysis. Finally, we point out some potential challenges and directions of future research.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.

北京阿比特科技有限公司