亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Novelty detection in discrete sequences is a challenging task, since deviations from the process generating the normal data are often small or intentionally hidden. Novelties can be detected by modeling normal sequences and measuring the deviations of a new sequence from the model predictions. However, in many applications data is generated by several distinct processes so that models trained on all the data tend to over-generalize and novelties remain undetected. We propose to approach this challenge through decomposition: by clustering the data we break down the problem, obtaining simpler modeling task in each cluster which can be modeled more accurately. However, this comes at a trade-off, since the amount of training data per cluster is reduced. This is a particular problem for discrete sequences where state-of-the-art models are data-hungry. The success of this approach thus depends on the quality of the clustering, i.e., whether the individual learning problems are sufficiently simpler than the joint problem. While clustering discrete sequences automatically is a challenging and domain-specific task, it is often easy for human domain experts, given the right tools. In this paper, we adapt a state-of-the-art visual analytics tool for discrete sequence clustering to obtain informed clusters from domain experts and use LSTMs to model each cluster individually. Our extensive empirical evaluation indicates that this informed clustering outperforms automatic ones and that our approach outperforms state-of-the-art novelty detection methods for discrete sequences in three real-world application scenarios. In particular, decomposition outperforms a global model despite less training data on each individual cluster.

相關內容

Amodal object segmentation is a challenging task that involves segmenting both visible and occluded parts of an object. In this paper, we propose a novel approach, called Coarse-to-Fine Segmentation (C2F-Seg), that addresses this problem by progressively modeling the amodal segmentation. C2F-Seg initially reduces the learning space from the pixel-level image space to the vector-quantized latent space. This enables us to better handle long-range dependencies and learn a coarse-grained amodal segment from visual features and visible segments. However, this latent space lacks detailed information about the object, which makes it difficult to provide a precise segmentation directly. To address this issue, we propose a convolution refine module to inject fine-grained information and provide a more precise amodal object segmentation based on visual features and coarse-predicted segmentation. To help the studies of amodal object segmentation, we create a synthetic amodal dataset, named as MOViD-Amodal (MOViD-A), which can be used for both image and video amodal object segmentation. We extensively evaluate our model on two benchmark datasets: KINS and COCO-A. Our empirical results demonstrate the superiority of C2F-Seg. Moreover, we exhibit the potential of our approach for video amodal object segmentation tasks on FISHBOWL and our proposed MOViD-A. Project page at: //jianxgao.github.io/C2F-Seg.

Target detection is a basic task to divide the object types in the orchard point cloud global map, which is used to count the overall situation of the orchard. And provide necessary information for unmanned navigation planning of agricultural vehicles. In order to divide the fruit trees and the ground in the point cloud global map of the standardized orchard, and provide the orchard overall information for the path planning of autonomous vehicles in the natural orchard environment. A fruit tree detection method based on the Yolo-V7 network is proposed, which can effectively detect fruit tree targets from multi-sensor fused radar point cloud, reduce the 3D point cloud information of the point cloud map to 2D for the fruit tree point cloud in the Yolo-V7 network detection map, and project the prediction results into the point cloud map. Generally, the target detection network based on PointNet has the problem of low speed and large computational load. The method proposed in this paper is fast and low computational load and is suitable for deployment in mobile robots. From the experimental results, the recall rate and accuracy rate of the proposed method in orchard fruit tree detection are 0.4 and 0.696 respectively, and its weight and reasoning time are 7.4 M and 28 ms respectively. The experimental results show that this method can achieve the robustness and efficiency of real-time detection of orchard fruit trees.

Tackling unfairness in graph learning models is a challenging task, as the unfairness issues on graphs involve both attributes and topological structures. Existing work on fair graph learning simply assumes that attributes of all nodes are available for model training and then makes fair predictions. In practice, however, the attributes of some nodes might not be accessible due to missing data or privacy concerns, which makes fair graph learning even more challenging. In this paper, we propose FairAC, a fair attribute completion method, to complement missing information and learn fair node embeddings for graphs with missing attributes. FairAC adopts an attention mechanism to deal with the attribute missing problem and meanwhile, it mitigates two types of unfairness, i.e., feature unfairness from attributes and topological unfairness due to attribute completion. FairAC can work on various types of homogeneous graphs and generate fair embeddings for them and thus can be applied to most downstream tasks to improve their fairness performance. To our best knowledge, FairAC is the first method that jointly addresses the graph attribution completion and graph unfairness problems. Experimental results on benchmark datasets show that our method achieves better fairness performance with less sacrifice in accuracy, compared with the state-of-the-art methods of fair graph learning. Code is available at: //github.com/donglgcn/FairAC.

Unsupervised anomaly segmentation aims to detect patterns that are distinct from any patterns processed during training, commonly called abnormal or out-of-distribution patterns, without providing any associated manual segmentations. Since anomalies during deployment can lead to model failure, detecting the anomaly can enhance the reliability of models, which is valuable in high-risk domains like medical imaging. This paper introduces Masked Modality Cycles with Conditional Diffusion (MMCCD), a method that enables segmentation of anomalies across diverse patterns in multimodal MRI. The method is based on two fundamental ideas. First, we propose the use of cyclic modality translation as a mechanism for enabling abnormality detection. Image-translation models learn tissue-specific modality mappings, which are characteristic of tissue physiology. Thus, these learned mappings fail to translate tissues or image patterns that have never been encountered during training, and the error enables their segmentation. Furthermore, we combine image translation with a masked conditional diffusion model, which attempts to `imagine' what tissue exists under a masked area, further exposing unknown patterns as the generative model fails to recreate them. We evaluate our method on a proxy task by training on healthy-looking slices of BraTS2021 multi-modality MRIs and testing on slices with tumors. We show that our method compares favorably to previous unsupervised approaches based on image reconstruction and denoising with autoencoders and diffusion models.

In this work, which is done in the context of a (moded) logic programming language, we devise a data-flow analysis dedicated to computing what we call argument profiles. Such a profile essentially describes, for each argument of a predicate, its functionality, i.e. the operations in which the argument can be involved during an evaluation of the predicate, as well as how the argument contributes to the consumption and/or construction of data values. While the computed argument profiles can be useful for applications in the context of program understanding (as each profile essentially provides a way to better understand the role of the argument), they more importantly provide a way to discern between arguments in a manner that is more fine-grained than what can be done with other abstract characterizations such as types and modes. This is important for applications where one needs to identify correspondences between the arguments of two or more different predicates that need to be compared, such as during clone detection. Moreover, since a total order can be defined on the abstract domain of profiles, our analysis can be used for rearranging predicate arguments and order them according to their functionality, constituting as such an essential ingredient for predicate normalization techniques.

When applying deep learning to remote sensing data in archaeological research, a notable obstacle is the limited availability of suitable datasets for training models. The application of transfer learning is frequently employed to mitigate this drawback. However, there is still a need to explore its effectiveness when applied across different archaeological datasets. This paper compares the performance of various transfer learning configurations using two semantic segmentation deep neural networks on two LiDAR datasets. The experimental results indicate that transfer learning-based approaches in archaeology can lead to performance improvements, although a systematic enhancement has not yet been observed. We provide specific insights about the validity of such techniques that can serve as a baseline for future works.

Graphs are used widely to model complex systems, and detecting anomalies in a graph is an important task in the analysis of complex systems. Graph anomalies are patterns in a graph that do not conform to normal patterns expected of the attributes and/or structures of the graph. In recent years, graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks in node classification, link prediction, and graph classification thanks to the highly expressive capability via message passing in effectively learning graph representations. To solve the graph anomaly detection problem, GNN-based methods leverage information about the graph attributes (or features) and/or structures to learn to score anomalies appropriately. In this survey, we review the recent advances made in detecting graph anomalies using GNN models. Specifically, we summarize GNN-based methods according to the graph type (i.e., static and dynamic), the anomaly type (i.e., node, edge, subgraph, and whole graph), and the network architecture (e.g., graph autoencoder, graph convolutional network). To the best of our knowledge, this survey is the first comprehensive review of graph anomaly detection methods based on GNNs.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司