亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Edge-assisted vehicle-to-everything (V2X) motion planning is an emerging paradigm to achieve safe and efficient autonomous driving, since it leverages the global position information shared among multiple vehicles. However, due to the imperfect channel state information (CSI), the position information of vehicles may become outdated and inaccurate. Conventional methods ignoring the communication delays could severely jeopardize driving safety. To fill this gap, this paper proposes a robust V2X motion planning policy that adapts between competitive driving under a low communication delay and conservative driving under a high communication delay, and guarantees small communication delays at key waypoints via power control. This is achieved by integrating the vehicle mobility and communication delay models and solving a joint design of motion planning and power control problem via the block coordinate descent framework. Simulation results show that the proposed driving policy achieves the smallest collision ratio compared with other benchmark policies.

相關內容

Movable antenna (MA) is a promising technology to improve wireless communication performance by varying the antenna position in a given finite area at the transceivers to create more favorable channel conditions. In this paper, we investigate the MA-enhanced multiple-access channel (MAC) for the uplink transmission from multiple users each equipped with a single MA to a base station (BS) with a fixed-position antenna (FPA) array. A field-response based channel model is used to characterize the multi-path channel between the antenna array of the BS and each user's MA with a flexible position. To evaluate the MAC performance gain provided by MAs, we formulate an optimization problem for minimizing the total transmit power of users, subject to a minimum-achievable-rate requirement for each user, where the positions of MAs and the transmit powers of users, as well as the receive combining matrix at the BS are jointly optimized. To solve this non-convex optimization problem involving intricately coupled variables, we develop two algorithms based on zero-forcing (ZF) and minimum mean square error (MMSE) combining methods, respectively. Specifically, for each algorithm, the combining matrix of the BS and the total transmit power of users are expressed as a function of the MAs' position vectors, which are then optimized by using the gradient descent method in an iterative manner. It is shown that the proposed ZF-based and MMSE-based algorithms can converge to high-quality suboptimal solutions with low computational complexities. Simulation results demonstrate that the proposed solutions for MA-enhanced multiple access systems can significantly decrease the total transmit power of users as compared to conventional FPA systems under both perfect and imperfect field-response information.

With the development of autonomous driving, it is becoming increasingly common for autonomous vehicles (AVs) and human-driven vehicles (HVs) to travel on the same roads. Existing single-vehicle planning algorithms on board struggle to handle sophisticated social interactions in the real world. Decisions made by these methods are difficult to understand for humans, raising the risk of crashes and making them unlikely to be applied in practice. Moreover, vehicle flows produced by open-source traffic simulators suffer from being overly conservative and lacking behavioral diversity. We propose a hierarchical multi-vehicle decision-making and planning framework with several advantages. The framework jointly makes decisions for all vehicles within the flow and reacts promptly to the dynamic environment through a high-frequency planning module. The decision module produces interpretable action sequences that can explicitly communicate self-intent to the surrounding HVs. We also present the cooperation factor and trajectory weight set, bringing diversity to autonomous vehicles in traffic at both the social and individual levels. The superiority of our proposed framework is validated through experiments with multiple scenarios, and the diverse behaviors in the generated vehicle trajectories are demonstrated through closed-loop simulations.

Autonomous vehicles that operate in urban environments shall comply with existing rules and reason about the interactions with other decision-making agents. In this paper, we introduce a decentralized and communication-free interaction-aware motion planner and apply it to Autonomous Surface Vessels (ASVs) in urban canals. We build upon a sampling-based method, namely Model Predictive Path Integral control (MPPI), and employ it to, in each time instance, compute both a collision-free trajectory for the vehicle and a prediction of other agents' trajectories, thus modeling interactions. To improve the method's efficiency in multi-agent scenarios, we introduce a two-stage sample evaluation strategy and define an appropriate cost function to achieve rule compliance. We evaluate this decentralized approach in simulations with multiple vessels in real scenarios extracted from Amsterdam's canals, showing superior performance than a state-of-the-art trajectory optimization framework and robustness when encountering different types of agents.

With the continuous increment of maritime applications, the development of marine networks for data offloading becomes necessary. However, the limited maritime network resources are very difficult to satisfy real-time demands. Besides, how to effectively handle multiple compute-intensive tasks becomes another intractable issue. Hence, in this paper, we focus on the decision of maritime task offloading by the cooperation of unmanned aerial vehicles (UAVs) and vessels. Specifically, we first propose a cooperative offloading framework, including the demands from marine Internet of Things (MIoTs) devices and resource providers from UAVs and vessels. Due to the limited energy and computation ability of UAVs, it is necessary to help better apply the vessels to computation offloading. Then, we formulate the studied problem into a Markov decision process, aiming to minimize the total execution time and energy cost. Then, we leverage Lyapunov optimization to convert the long-term constraints of the total execution time and energy cost into their short-term constraints, further yielding a set of per-time-slot optimization problems. Furthermore, we propose a Q-learning based approach to solve the short-term problem efficiently. Finally, simulation results are conducted to verify the correctness and effectiveness of the proposed algorithm.

In the Internet-of-Things (IoT), massive sensitive and confidential information is transmitted wirelessly, making security a serious concern. This is particularly true when technologies, such as non-orthogonal multiple access (NOMA), are used, making it possible for users to access each other's data. This paper studies secure communications in multiuser NOMA downlink systems, where each user is potentially an eavesdropper. Resource allocation is formulated to achieve the maximum sum secrecy rate, meanwhile satisfying the users' data requirements and power constraint. We solve this non-trivial, mixed-integer non-linear programming problem by decomposing it into power allocation with a closed-form solution, and user pairing obtained effectively using linear programming relaxation and barrier algorithm. These subproblems are solved iteratively until convergence, with the convergence rate rigorously analyzed. Simulations demonstrate that our approach outperforms its existing alternatives significantly in the sum secrecy rate and computational complexity.

Safety is crucial for robotic missions within an uncertain environment. Common safety requirements such as collision avoidance are only state-dependent, which can be restrictive for complex missions. In this work, we address a more general formulation as safe-return constraints, which require the existence of a return-policy to drive the system back to a set of safe states with high probability. The robot motion is modeled as a Markov Decision Process (MDP) with probabilistic labels, which can be highly non-ergodic. The robotic task is specified as Linear Temporal Logic (LTL) formulas over these labels, such as surveillance and transportation. We first provide theoretical guarantees on the re-formulation of such safe-return constraints, and a baseline solution based on computing two complete product automata. Furthermore, to tackle the computational complexity, we propose a hierarchical planning algorithm that combines the feature-based symbolic and temporal abstraction with constrained optimization. It synthesizes simultaneously two dependent motion policies: the outbound policy minimizes the overall cost of satisfying the task with a high probability, while the return policy ensures the safe-return constraints. The problem formulation is versatile regarding the robot model, task specifications and safety constraints. The proposed hierarchical algorithm is more efficient and can solve much larger problems than the baseline solution, with only a slight loss of optimality. Numerical validations include simulations and hardware experiments of a search-and-rescue mission and a planetary exploration mission over various system sizes.

This paper addresses the online motion planning problem of mobile robots under complex high-level tasks. The robot motion is modeled as an uncertain Markov Decision Process (MDP) due to limited initial knowledge, while the task is specified as Linear Temporal Logic (LTL) formulas. The proposed framework enables the robot to explore and update the system model in a Bayesian way, while simultaneously optimizing the asymptotic costs of satisfying the complex temporal task. Theoretical guarantees are provided for the synthesized outgoing policy and safety policy. More importantly, instead of greedy exploration under the classic ergodicity assumption, a safe-return requirement is enforced such that the robot can always return to home states with a high probability. The overall methods are validated by numerical simulations.

Autonomous vehicles and robots require increasingly more robustness and reliability to meet the demands of modern tasks. These requirements specially apply to cameras onboard such vehicles because they are the predominant sensors to acquire information about the environment and support actions. Cameras must maintain proper functionality and take automatic countermeasures if necessary. However, few works examine the practical use of a general condition monitoring approach for cameras and designs countermeasures in the context of an envisaged high-level application. We propose a generic and interpretable self-health-maintenance framework for cameras based on data- and physically-grounded models. To this end, we determine two reliable, real-time capable estimators for typical image effects of a camera in poor condition (blur, noise phenomena and most common combinations) by comparing traditional and retrained machine learning-based approaches in extensive experiments. Furthermore, we demonstrate on a real-world ground vehicle how one can adjust the camera parameters to achieve optimal whole-system capability based on experimental (non-linear and non-monotonic) input-output performance curves, using object detection, motion blur and sensor noise as examples. Our framework not only provides a practical ready-to-use solution to evaluate and maintain the health of cameras, but can also serve as a basis for extensions to tackle more sophisticated problems that combine additional data sources (e.g., sensor or environment parameters) empirically in order to attain fully reliable and robust machines.

Mobile parcel lockers have been recently proposed by logistics operators as a technology that could help reduce traffic congestion and operational costs in urban freight distribution. Given their ability to relocate throughout their area of deployment, they hold the potential to improve customer accessibility and convenience. In this study, we formulate the Mobile Parcel Locker Problem (MPLP) , a special case of the Location-Routing Problem (LRP) which determines the optimal stopover location for MPLs throughout the day and plans corresponding delivery routes. A Hybrid Q Learning Network based Method (HQM) is developed to resolve the computational complexity of the resulting large problem instances while escaping local optima. In addition, the HQM is integrated with global and local search mechanisms to resolve the dilemma of exploration and exploitation faced by classic reinforcement learning methods. We examine the performance of HQM under different problem sizes (up to 200 nodes) and benchmarked it against the exact approach and Genetic Algorithm (GA). Our results indicate that HQM achieves better optimisation performance with shorter computation time than the exact approach solved by the Gurobi solver in large problem instances. Additionally, the average reward obtained by HQM is 1.96 times greater than GA, which demonstrates that HQM has a better optimisation ability. Further, we identify critical factors that contribute to fleet size requirements, travel distances, and service delays. Our findings outline that the efficiency of MPLs is mainly contingent on the length of time windows and the deployment of MPL stopovers. Finally, we highlight managerial implications based on parametric analysis to provide guidance for logistics operators in the context of efficient last-mile distribution operations.

Uncertainty analysis in the outcomes of model predictions is a key element in decision-based material design to establish confidence in the models and evaluate the fidelity of models. Uncertainty Propagation (UP) is a technique to determine model output uncertainties based on the uncertainty in its input variables. The most common and simplest approach to propagate the uncertainty from a model inputs to its outputs is by feeding a large number of samples to the model, known as Monte Carlo (MC) simulation which requires exhaustive sampling from the input variable distributions. However, MC simulations are impractical when models are computationally expensive. In this work, we investigate the hypothesis that while all samples are useful on average, some samples must be more useful than others. Thus, reordering MC samples and propagating more useful samples can lead to enhanced convergence in statistics of interest earlier and thus, reducing the computational burden of UP process. Here, we introduce a methodology to adaptively reorder MC samples and show how it results in reduction of computational expense of UP processes.

北京阿比特科技有限公司