亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Since more and more algorithms are proposed for multi-agent path finding (MAPF) and each of them has its strengths, choosing the correct one for a specific scenario that fulfills some specified requirements is an important task. Previous research in algorithm selection for MAPF built a standard workflow and showed that machine learning can help. In this paper, we study general solvers for MAPF, which further include suboptimal algorithms. We propose different groups of optimization objectives and learning tasks to handle the new tradeoff between runtime and solution quality. We conduct extensive experiments to show that the same loss can not be used for different groups of optimization objectives, and that standard computer vision models are no worse than customized architecture. We also provide insightful discussions on how feature-sensitive pre-processing is needed for learning for MAPF, and how different learning metrics are correlated to different learning tasks.

相關內容

Hypergraphs are characterized by complex topological structure, representing higher-order interactions among multiple entities through hyperedges. Lately, hypergraph-based deep learning methods to learn informative data representations for the problem of node classification on text-attributed hypergraphs have garnered increasing research attention. However, existing methods struggle to simultaneously capture the full extent of hypergraph structural information and the rich linguistic attributes inherent in the nodes attributes, which largely hampers their effectiveness and generalizability. To overcome these challenges, we explore ways to further augment a pretrained BERT model with specialized hypergraph-aware layers for the task of node classification. Such layers introduce higher-order structural inductive bias into the language model, thus improving the model's capacity to harness both higher-order context information from the hypergraph structure and semantic information present in text. In this paper, we propose a new architecture, HyperBERT, a mixed text-hypergraph model which simultaneously models hypergraph relational structure while maintaining the high-quality text encoding capabilities of a pre-trained BERT. Notably, HyperBERT presents results that achieve a new state-of-the-art on five challenging text-attributed hypergraph node classification benchmarks.

Humans use social context to specify preferences over behaviors, i.e. their reward functions. Yet, algorithms for inferring reward models from preference data do not take this social learning view into account. Inspired by pragmatic human communication, we study how to extract fine-grained data regarding why an example is preferred that is useful for learning more accurate reward models. We propose to enrich binary preference queries to ask both (1) which features of a given example are preferable in addition to (2) comparisons between examples themselves. We derive an approach for learning from these feature-level preferences, both for cases where users specify which features are reward-relevant, and when users do not. We evaluate our approach on linear bandit settings in both vision- and language-based domains. Results support the efficiency of our approach in quickly converging to accurate rewards with fewer comparisons vs. example-only labels. Finally, we validate the real-world applicability with a behavioral experiment on a mushroom foraging task. Our findings suggest that incorporating pragmatic feature preferences is a promising approach for more efficient user-aligned reward learning.

Direct Preference Optimization (DPO) is a widely used offline preference optimization algorithm that reparameterizes reward functions in reinforcement learning from human feedback (RLHF) to enhance simplicity and training stability. In this work, we propose SimPO, a simpler yet more effective approach. The effectiveness of SimPO is attributed to a key design: using the average log probability of a sequence as the implicit reward. This reward formulation better aligns with model generation and eliminates the need for a reference model, making it more compute and memory efficient. Additionally, we introduce a target reward margin to the Bradley-Terry objective to encourage a larger margin between the winning and losing responses, further enhancing the algorithm's performance. We compare SimPO to DPO and its latest variants across various state-of-the-art training setups, including both base and instruction-tuned models like Mistral and Llama3. We evaluated on extensive instruction-following benchmarks, including AlpacaEval 2, MT-Bench, and the recent challenging Arena-Hard benchmark. Our results demonstrate that SimPO consistently and significantly outperforms existing approaches without substantially increasing response length. Specifically, SimPO outperforms DPO by up to 6.4 points on AlpacaEval 2 and by up to 7.5 points on Arena-Hard. Our top-performing model, built on Llama3-8B-Instruct, achieves a remarkable 44.7 length-controlled win rate on AlpacaEval 2 -- surpassing Claude 3 Opus on the leaderboard, and a 33.8 win rate on Arena-Hard -- making it the strongest 8B open-source model.

The rapid development of collaborative robotics has provided a new possibility of helping the elderly who has difficulties in daily life, allowing robots to operate according to specific intentions. However, efficient human-robot cooperation requires natural, accurate and reliable intention recognition in shared environments. The current paramount challenge for this is reducing the uncertainty of multimodal fused intention to be recognized and reasoning adaptively a more reliable result despite current interactive condition. In this work we propose a novel learning-based multimodal fusion framework Batch Multimodal Confidence Learning for Opinion Pool (BMCLOP). Our approach combines Bayesian multimodal fusion method and batch confidence learning algorithm to improve accuracy, uncertainty reduction and success rate given the interactive condition. In particular, the generic and practical multimodal intention recognition framework can be easily extended further. Our desired assistive scenarios consider three modalities gestures, speech and gaze, all of which produce categorical distributions over all the finite intentions. The proposed method is validated with a six-DoF robot through extensive experiments and exhibits high performance compared to baselines.

Curvature serves as a potent and descriptive invariant, with its efficacy validated both theoretically and practically within graph theory. We employ a definition of generalized Ricci curvature proposed by Ollivier, which Lin and Yau later adapted to graph theory, known as Ollivier-Ricci curvature (ORC). ORC measures curvature using the Wasserstein distance, thereby integrating geometric concepts with probability theory and optimal transport. Jost and Liu previously discussed the lower bound of ORC by showing the upper bound of the Wasserstein distance. We extend the applicability of these bounds to discrete spaces with metrics on integers, specifically hypergraphs. Compared to prior work on ORC in hypergraphs by Coupette, Dalleiger, and Rieck, which faced computational challenges, our method introduces a simplified approach with linear computational complexity, making it particularly suitable for analyzing large-scale networks. Through extensive simulations and application to synthetic and real-world datasets, we demonstrate the significant improvements our method offers in evaluating ORC.

In practical statistical causal discovery (SCD), embedding domain expert knowledge as constraints into the algorithm is significant for creating consistent meaningful causal models, despite the challenges in systematic acquisition of the background knowledge. To overcome these challenges, this paper proposes a novel methodology for causal inference, in which SCD methods and knowledge based causal inference (KBCI) with a large language model (LLM) are synthesized through ``statistical causal prompting (SCP)'' for LLMs and prior knowledge augmentation for SCD. Experiments have revealed that GPT-4 can cause the output of the LLM-KBCI and the SCD result with prior knowledge from LLM-KBCI to approach the ground truth, and that the SCD result can be further improved, if GPT-4 undergoes SCP. Furthermore, by using an unpublished real-world dataset, we have demonstrated that the background knowledge provided by the LLM can improve SCD on this dataset, even if this dataset has never been included in the training data of the LLM. The proposed approach can thus address challenges such as dataset biases and limitations, illustrating the potential of LLMs to improve data-driven causal inference across diverse scientific domains.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司