亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite the recent success of Graph Neural Networks (GNNs), it remains challenging to train GNNs on large-scale graphs due to neighbor explosions. As a remedy, distributed computing becomes a promising solution by leveraging abundant computing resources (e.g., GPU). However, the node dependency of graph data increases the difficulty of achieving high concurrency in distributed GNN training, which suffers from the massive communication overhead. To address it, Historical value approximation is deemed a promising class of distributed training techniques. It utilizes an offline memory to cache historical information (e.g., node embedding) as an affordable approximation of the exact value and achieves high concurrency. However, such benefits come at the cost of involving dated training information, leading to staleness, imprecision, and convergence issues. To overcome these challenges, this paper proposes SAT (Staleness-Alleviated Training), a novel and scalable distributed GNN training framework that reduces the embedding staleness adaptively. The key idea of SAT is to model the GNN's embedding evolution as a temporal graph and build a model upon it to predict future embedding, which effectively alleviates the staleness of the cached historical embedding. We propose an online algorithm to train the embedding predictor and the distributed GNN alternatively and further provide a convergence analysis. Empirically, we demonstrate that SAT can effectively reduce embedding staleness and thus achieve better performance and convergence speed on multiple large-scale graph datasets.

相關內容

SAT是研究者關注命題可滿足性問題的理論與應用的第一次年度會議。除了簡單命題可滿足性外,它還包括布爾優化(如MaxSAT和偽布爾(PB)約束)、量化布爾公式(QBF)、可滿足性模理論(SMT)和約束規劃(CP),用于與布爾級推理有明確聯系的問題。官網鏈接: · MoDELS · Agent · 穩健性 · TOOLS ·
2023 年 10 月 12 日

The reasoning capabilities of LLM (Large Language Model) are widely acknowledged in recent research, inspiring studies on tool learning and autonomous agents. LLM serves as the "brain" of agent, orchestrating multiple tools for collaborative multi-step task solving. Unlike methods invoking tools like calculators or weather APIs for straightforward tasks, multi-modal agents excel by integrating diverse AI models for complex challenges. However, current multi-modal agents neglect the significance of model selection: they primarily focus on the planning and execution phases, and will only invoke predefined task-specific models for each subtask, making the execution fragile. Meanwhile, other traditional model selection methods are either incompatible with or suboptimal for the multi-modal agent scenarios, due to ignorance of dependencies among subtasks arising by multi-step reasoning. To this end, we identify the key challenges therein and propose the $\textit{M}^3$ framework as a plug-in with negligible runtime overhead at test-time. This framework improves model selection and bolsters the robustness of multi-modal agents in multi-step reasoning. In the absence of suitable benchmarks, we create MS-GQA, a new dataset specifically designed to investigate the model selection challenge in multi-modal agents. Our experiments reveal that our framework enables dynamic model selection, considering both user inputs and subtask dependencies, thereby robustifying the overall reasoning process. Our code and benchmark: //github.com/LINs-lab/M3.

Given an image and an associated textual question, the purpose of Knowledge-Based Visual Question Answering (KB-VQA) is to provide a correct answer to the question with the aid of external knowledge bases. Prior KB-VQA models are usually formulated as a retriever-classifier framework, where a pre-trained retriever extracts textual or visual information from knowledge graphs and then makes a prediction among the candidates. Despite promising progress, there are two drawbacks with existing models. Firstly, modeling question-answering as multi-class classification limits the answer space to a preset corpus and lacks the ability of flexible reasoning. Secondly, the classifier merely consider "what is the answer" without "how to get the answer", which cannot ground the answer to explicit reasoning paths. In this paper, we confront the challenge of \emph{explainable open-set} KB-VQA, where the system is required to answer questions with entities at wild and retain an explainable reasoning path. To resolve the aforementioned issues, we propose a new retriever-ranker paradigm of KB-VQA, Graph pATH rankER (GATHER for brevity). Specifically, it contains graph constructing, pruning, and path-level ranking, which not only retrieves accurate answers but also provides inference paths that explain the reasoning process. To comprehensively evaluate our model, we reformulate the benchmark dataset OK-VQA with manually corrected entity-level annotations and release it as ConceptVQA. Extensive experiments on real-world questions demonstrate that our framework is not only able to perform open-set question answering across the whole knowledge base but provide explicit reasoning path.

Students find their first course in Formal Languages and Automata Theory challenging. In addition to the development of formal arguments, most students struggle to understand nondeterministic computation models. In part, the struggle stems from the course exposing them for the first time to nondeterminism. Often, students find it difficult to understand why a nondeterministic machine accepts or rejects a word. Furthermore, they may feel uncomfortable with there being multiple computations on the same input and with a machine not consuming all of its input. This article describes a visualization tool developed to help students understand nondeterministic behavior. The tool is integrated into, FSM, a domain-specific language for the Automata Theory classroom. The strategy is based on the automatic generation of computation graphs given a machine and an input word. Unlike previous visualization tools, the computation graphs generated reflect the structure of the given machine's transition relation and not the structure of the computation tree.

Good posture and form are essential for safe and productive exercising. Even in gym settings, trainers may not be readily available for feedback. Rehabilitation therapies and fitness workouts can thus benefit from recommender systems that provide real-time evaluation. In this paper, we present an algorithmic pipeline that can diagnose problems in exercise techniques and offer corrective recommendations, with high sensitivity and specificity in real-time. We use MediaPipe for pose recognition, count repetitions using peak-prominence detection, and use a learnable physics simulator to track motion evolution for each exercise. A test video is diagnosed based on deviations from the prototypical learned motion using statistical learning. The system is evaluated on six full and upper body exercises. These real-time recommendations, counseled via low-cost equipment like smartphones, will allow exercisers to rectify potential mistakes making self-practice feasible while reducing the risk of workout injuries.

A non-interactive ZK (NIZK) proof enables verification of NP statements without revealing secrets about them. However, an adversary that obtains a NIZK proof may be able to clone this proof and distribute arbitrarily many copies of it to various entities: this is inevitable for any proof that takes the form of a classical string. In this paper, we ask whether it is possible to rely on quantum information in order to build NIZK proof systems that are impossible to clone. We define and construct unclonable non-interactive zero-knowledge proofs (of knowledge) for NP. Besides satisfying the zero-knowledge and proof of knowledge properties, these proofs additionally satisfy unclonability. Very roughly, this ensures that no adversary can split an honestly generated proof of membership of an instance $x$ in an NP language $\mathcal{L}$ and distribute copies to multiple entities that all obtain accepting proofs of membership of $x$ in $\mathcal{L}$. Our result has applications to unclonable signatures of knowledge, which we define and construct in this work; these non-interactively prevent replay attacks.

Fine-tuning pre-trained Vision Transformers (ViT) has consistently demonstrated promising performance in the realm of visual recognition. However, adapting large pre-trained models to various tasks poses a significant challenge. This challenge arises from the need for each model to undergo an independent and comprehensive fine-tuning process, leading to substantial computational and memory demands. While recent advancements in Parameter-efficient Transfer Learning (PETL) have demonstrated their ability to achieve superior performance compared to full fine-tuning with a smaller subset of parameter updates, they tend to overlook dense prediction tasks such as object detection and segmentation. In this paper, we introduce Hierarchical Side-Tuning (HST), a novel PETL approach that enables ViT transfer to various downstream tasks effectively. Diverging from existing methods that exclusively fine-tune parameters within input spaces or certain modules connected to the backbone, we tune a lightweight and hierarchical side network (HSN) that leverages intermediate activations extracted from the backbone and generates multi-scale features to make predictions. To validate HST, we conducted extensive experiments encompassing diverse visual tasks, including classification, object detection, instance segmentation, and semantic segmentation. Notably, our method achieves state-of-the-art average Top-1 accuracy of 76.0% on VTAB-1k, all while fine-tuning a mere 0.78M parameters. When applied to object detection tasks on COCO testdev benchmark, HST even surpasses full fine-tuning and obtains better performance with 49.7 box AP and 43.2 mask AP using Cascade Mask R-CNN.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Knowledge graph (KG) embeddings learn low-dimensional representations of entities and relations to predict missing facts. KGs often exhibit hierarchical and logical patterns which must be preserved in the embedding space. For hierarchical data, hyperbolic embedding methods have shown promise for high-fidelity and parsimonious representations. However, existing hyperbolic embedding methods do not account for the rich logical patterns in KGs. In this work, we introduce a class of hyperbolic KG embedding models that simultaneously capture hierarchical and logical patterns. Our approach combines hyperbolic reflections and rotations with attention to model complex relational patterns. Experimental results on standard KG benchmarks show that our method improves over previous Euclidean- and hyperbolic-based efforts by up to 6.1% in mean reciprocal rank (MRR) in low dimensions. Furthermore, we observe that different geometric transformations capture different types of relations while attention-based transformations generalize to multiple relations. In high dimensions, our approach yields new state-of-the-art MRRs of 49.6% on WN18RR and 57.7% on YAGO3-10.

北京阿比特科技有限公司