亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Fine-tuning large pre-trained models has become the de facto strategy for developing both task-specific and general-purpose machine learning systems, including developing models that are safe to deploy. Despite its clear importance, there has been minimal work that explains how fine-tuning alters the underlying capabilities learned by a model during pretraining: does fine-tuning yield entirely novel capabilities or does it just modulate existing ones? We address this question empirically in synthetic, controlled settings where we can use mechanistic interpretability tools (e.g., network pruning and probing) to understand how the model's underlying capabilities are changing. We perform an extensive analysis of the effects of fine-tuning in these settings, and show that: (i) fine-tuning rarely alters the underlying model capabilities; (ii) a minimal transformation, which we call a 'wrapper', is typically learned on top of the underlying model capabilities, creating the illusion that they have been modified; and (iii) further fine-tuning on a task where such hidden capabilities are relevant leads to sample-efficient 'revival' of the capability, i.e., the model begins reusing these capability after only a few gradient steps. This indicates that practitioners can unintentionally remove a model's safety wrapper merely by fine-tuning it on a, e.g., superficially unrelated, downstream task. We additionally perform analysis on language models trained on the TinyStories dataset to support our claims in a more realistic setup.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · INFORMS · 樣本 · 自助法/自舉法 ·
2024 年 1 月 12 日

Covariance matrices of random vectors contain information that is crucial for modelling. Certain structures and patterns of the covariances (or correlations) may be used to justify parametric models, e.g., autoregressive models. Until now, there have been only few approaches for testing such covariance structures systematically and in a unified way. In the present paper, we propose such a unified testing procedure, and we will exemplify the approach with a large variety of covariance structure models. This includes common structures such as diagonal matrices, Toeplitz matrices, and compound symmetry but also the more involved autoregressive matrices. We propose hypothesis tests for these structures, and we use bootstrap techniques for better small-sample approximation. The structures of the proposed tests invite for adaptations to other covariance patterns by choosing the hypothesis matrix appropriately. We prove their correctness for large sample sizes. The proposed methods require only weak assumptions. With the help of a simulation study, we assess the small sample properties of the tests. We also analyze a real data set to illustrate the application of the procedure.

Advances in survival analysis have facilitated unprecedented flexibility in data modeling, yet there remains a lack of tools for graphically illustrating the influence of continuous covariates on predicted survival outcomes. We propose the utilization of a colored contour plot to depict the predicted survival probabilities over time, and provide a Shiny app and R package as implementations of this tool. Our approach is capable of supporting conventional models, including the Cox and Fine-Gray models. However, its capability shines when coupled with cutting-edge machine learning models such as random survival forests and deep neural networks.

Gaussian processes (GPs) are widely-used tools in spatial statistics and machine learning and the formulae for the mean function and covariance kernel of a GP $T u$ that is the image of another GP $u$ under a linear transformation $T$ acting on the sample paths of $u$ are well known, almost to the point of being folklore. However, these formulae are often used without rigorous attention to technical details, particularly when $T$ is an unbounded operator such as a differential operator, which is common in many modern applications. This note provides a self-contained proof of the claimed formulae for the case of a closed, densely-defined operator $T$ acting on the sample paths of a square-integrable (not necessarily Gaussian) stochastic process. Our proof technique relies upon Hille's theorem for the Bochner integral of a Banach-valued random variable.

Adversarial generative models, such as Generative Adversarial Networks (GANs), are widely applied for generating various types of data, i.e., images, text, and audio. Accordingly, its promising performance has led to the GAN-based adversarial attack methods in the white-box and black-box attack scenarios. The importance of transferable black-box attacks lies in their ability to be effective across different models and settings, more closely aligning with real-world applications. However, it remains challenging to retain the performance in terms of transferable adversarial examples for such methods. Meanwhile, we observe that some enhanced gradient-based transferable adversarial attack algorithms require prolonged time for adversarial sample generation. Thus, in this work, we propose a novel algorithm named GE-AdvGAN to enhance the transferability of adversarial samples whilst improving the algorithm's efficiency. The main approach is via optimising the training process of the generator parameters. With the functional and characteristic similarity analysis, we introduce a novel gradient editing (GE) mechanism and verify its feasibility in generating transferable samples on various models. Moreover, by exploring the frequency domain information to determine the gradient editing direction, GE-AdvGAN can generate highly transferable adversarial samples while minimizing the execution time in comparison to the state-of-the-art transferable adversarial attack algorithms. The performance of GE-AdvGAN is comprehensively evaluated by large-scale experiments on different datasets, which results demonstrate the superiority of our algorithm. The code for our algorithm is available at: //github.com/LMBTough/GE-advGAN

Scattering networks yield powerful and robust hierarchical image descriptors which do not require lengthy training and which work well with very few training data. However, they rely on sampling the scale dimension. Hence, they become sensitive to scale variations and are unable to generalize to unseen scales. In this work, we define an alternative feature representation based on the Riesz transform. We detail and analyze the mathematical foundations behind this representation. In particular, it inherits scale equivariance from the Riesz transform and completely avoids sampling of the scale dimension. Additionally, the number of features in the representation is reduced by a factor four compared to scattering networks. Nevertheless, our representation performs comparably well for texture classification with an interesting addition: scale equivariance. Our method yields superior performance when dealing with scales outside of those covered by the training dataset. The usefulness of the equivariance property is demonstrated on the digit classification task, where accuracy remains stable even for scales four times larger than the one chosen for training. As a second example, we consider classification of textures.

We are interested in generating surfaces with arbitrary roughness and forming patterns on the surfaces. Two methods are applied to construct rough surfaces. In the first method, some superposition of wave functions with random frequencies and angles of propagation are used to get periodic rough surfaces with analytic parametric equations. The amplitude of such surfaces is also an important variable in the provided eigenvalue analysis for the Laplace-Beltrami operator and in the generation of pattern formation. Numerical experiments show that the patterns become irregular as the amplitude and frequency of the rough surface increase. For the sake of easy generalization to closed manifolds, we propose a second construction method for rough surfaces, which uses random nodal values and discretized heat filters. We provide numerical evidence that both surface {construction methods} yield comparable patterns to those {observed} in real-life animals.

The frontier of quantum computing (QC) simulation on classical hardware is quickly reaching the hard scalability limits for computational feasibility. Nonetheless, there is still a need to simulate large quantum systems classically, as the Noisy Intermediate Scale Quantum (NISQ) devices are yet to be considered fault tolerant and performant enough in terms of operations per second. Each of the two main exact simulation techniques, state vector and tensor network simulators, boasts specific limitations. The exponential memory requirement of state vector simulation, when compared to the qubit register sizes of currently available quantum computers, quickly saturates the capacity of the top HPC machines currently available. Tensor network contraction approaches, which encode quantum circuits into tensor networks and then contract them over an output bit string to obtain its probability amplitude, still fall short of the inherent complexity of finding an optimal contraction path, which maps to a max-cut problem on a dense mesh, a notably NP-hard problem. This article aims at investigating the limits of current state-of-the-art simulation techniques on a test bench made of eight widely used quantum subroutines, each in 31 different configurations, with special emphasis on performance. We then correlate the performance measures of the simulators with the metrics that characterise the benchmark circuits, identifying the main reasons behind the observed performance trend. From our observations, given the structure of a quantum circuit and the number of qubits, we highlight how to select the best simulation strategy, obtaining a speedup of up to an order of magnitude.

We consider the on-line coloring problem restricted to proper interval graphs with known interval representation. Chrobak and \'{S}lusarek (1981) showed that the greedy $\textrm{First-Fit}$ algorithm has a strict competitive ratio of $2$. It remains open whether there is an on-line algorithm that performs better than $\textrm{First-Fit}$. Piotr (2008) showed that if the representation is not known, there is no better on-line algorithm. Epstein and Levy (2005) showed that no on-line algorithm has a strict competitive ratio less than $1.5$ when a unit-interval representation is known, which was later improved to $1.\overline{3}$. In this paper, we show that there is no on-line algorithm with strict competitive ratio less than $1.75$ by presenting a strategy that can force any on-line algorithm to use $7$ colors on a proper interval graph $G$ with chromatic number $\chi(G)\leq 4$ and known interval representation.

Federated learning (FL) has emerged as a promising strategy for collaboratively training complicated machine learning models from different medical centers without the need of data sharing. However, the traditional FL relies on a central server to orchestrate the global model training among clients. This makes it vulnerable to the failure of the model server. Meanwhile, the model trained based on the global data property may not yield the best performance on the local data of a particular site due to the variations of data characteristics among them. To address these limitations, we proposed Gossip Mutual Learning(GML), a decentralized collaborative learning framework that employs Gossip Protocol for direct peer-to-peer communication and encourages each site to optimize its local model by leveraging useful information from peers through mutual learning. On the task of tumor segmentation on PET/CT images using HECKTOR21 dataset with 223 cases from five clinical sites, we demonstrated GML could improve tumor segmentation performance in terms of Dice Similarity Coefficient (DSC) by 3.2%, 4.6% and 10.4% on site-specific testing cases as compared to three baseline methods: pooled training, FedAvg and individual training, respectively. We also showed GML has comparable generalization performance as pooled training and FedAvg when applying them on 78 cases from two out-of-sample sites where no case was used for model training. In our experimental setup, GML showcased a sixfold decrease in communication overhead compared to FedAvg, requiring only 16.67% of the total communication overhead.

The use of propensity score (PS) methods has become ubiquitous in causal inference. At the heart of these methods is the positivity assumption. Violation of the positivity assumption leads to the presence of extreme PS weights when estimating average causal effects of interest, such as the average treatment effect (ATE) or the average treatment effect on the treated (ATT), which renders invalid related statistical inference. To circumvent this issue, trimming or truncating the extreme estimated PSs have been widely used. However, these methods require that we specify a priori a threshold and sometimes an additional smoothing parameter. While there are a number of methods dealing with the lack of positivity when estimating ATE, surprisingly there is no much effort in the same issue for ATT. In this paper, we first review widely used methods, such as trimming and truncation in ATT. We emphasize the underlying intuition behind these methods to better understand their applications and highlight their main limitations. Then, we argue that the current methods simply target estimands that are scaled ATT (and thus move the goalpost to a different target of interest), where we specify the scale and the target populations. We further propose a PS weight-based alternative for the average causal effect on the treated, called overlap weighted average treatment effect on the treated (OWATT). The appeal of our proposed method lies in its ability to obtain similar or even better results than trimming and truncation while relaxing the constraint to choose a priori a threshold (or even specify a smoothing parameter). The performance of the proposed method is illustrated via a series of Monte Carlo simulations and a data analysis on racial disparities in health care expenditures.

北京阿比特科技有限公司