亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Neural 3D implicit representations learn priors that are useful for diverse applications, such as single- or multiple-view 3D reconstruction. A major downside of existing approaches while rendering an image is that they require evaluating the network multiple times per camera ray so that the high computational time forms a bottleneck for downstream applications. We address this problem by introducing a novel neural scene representation that we call the directional distance function (DDF). To this end, we learn a signed distance function (SDF) along with our DDF model to represent a class of shapes. Specifically, our DDF is defined on the unit sphere and predicts the distance to the surface along any given direction. Therefore, our DDF allows rendering images with just a single network evaluation per camera ray. Based on our DDF, we present a novel fast algorithm (FIRe) to reconstruct 3D shapes given a posed depth map. We evaluate our proposed method on 3D reconstruction from single-view depth images, where we empirically show that our algorithm reconstructs 3D shapes more accurately and it is more than 15 times faster (per iteration) than competing methods.

相關內容

Despite remarkable success in various applications, large language models (LLMs) are vulnerable to adversarial jailbreaks that make the safety guardrails void. However, previous studies for jailbreaks usually resort to brute-force optimization or extrapolations of a high computation cost, which might not be practical or effective. In this paper, inspired by the Milgram experiment w.r.t. the authority power for inciting harmfulness, we disclose a lightweight method, termed DeepInception, which can easily hypnotize LLM to be a jailbreaker. Specifically, DeepInception leverages the personification ability of LLM to construct a novel nested scene to behave, which realizes an adaptive way to escape the usage control in a normal scenario. Empirically, our DeepInception can achieve competitive jailbreak success rates with previous counterparts and realize a continuous jailbreak in subsequent interactions, which reveals the critical weakness of self-losing on both open and closed-source LLMs like Falcon, Vicuna-v1.5, Llama-2, and GPT-3.5-turbo/4. Our investigation appeals to people to pay more attention to the safety aspects of LLMs and develop a stronger defense against their misuse risks. The code is publicly available at: //github.com/tmlr-group/DeepInception.

This study explores the use of Large Language Models (LLMs) to analyze text comments from Reddit users, aiming to achieve two primary objectives: firstly, to pinpoint critical excerpts that support a predefined psychological assessment of suicidal risk; and secondly, to summarize the material to substantiate the preassigned suicidal risk level. The work is circumscribed to the use of "open-source" LLMs that can be run locally, thereby enhancing data privacy. Furthermore, it prioritizes models with low computational requirements, making it accessible to both individuals and institutions operating on limited computing budgets. The implemented strategy only relies on a carefully crafted prompt and a grammar to guide the LLM's text completion. Despite its simplicity, the evaluation metrics show outstanding results, making it a valuable privacy-focused and cost-effective approach. This work is part of the Computational Linguistics and Clinical Psychology (CLPsych) 2024 shared task.

Despite the impressive capabilities of large language models (LLMs) across diverse applications, they still suffer from trustworthiness issues, such as hallucinations and misalignments. Retrieval-augmented language models (RAG) have been proposed to enhance the credibility of generations by grounding external knowledge, but the theoretical understandings of their generation risks remains unexplored. In this paper, we answer: 1) whether RAG can indeed lead to low generation risks, 2) how to provide provable guarantees on the generation risks of RAG and vanilla LLMs, and 3) what sufficient conditions enable RAG models to reduce generation risks. We propose C-RAG, the first framework to certify generation risks for RAG models. Specifically, we provide conformal risk analysis for RAG models and certify an upper confidence bound of generation risks, which we refer to as conformal generation risk. We also provide theoretical guarantees on conformal generation risks for general bounded risk functions under test distribution shifts. We prove that RAG achieves a lower conformal generation risk than that of a single LLM when the quality of the retrieval model and transformer is non-trivial. Our intensive empirical results demonstrate the soundness and tightness of our conformal generation risk guarantees across four widely-used NLP datasets on four state-of-the-art retrieval models.

Recent text-to-video diffusion models have achieved impressive progress. In practice, users often desire the ability to control object motion and camera movement independently for customized video creation. However, current methods lack the focus on separately controlling object motion and camera movement in a decoupled manner, which limits the controllability and flexibility of text-to-video models. In this paper, we introduce Direct-a-Video, a system that allows users to independently specify motions for one or multiple objects and/or camera movements, as if directing a video. We propose a simple yet effective strategy for the decoupled control of object motion and camera movement. Object motion is controlled through spatial cross-attention modulation using the model's inherent priors, requiring no additional optimization. For camera movement, we introduce new temporal cross-attention layers to interpret quantitative camera movement parameters. We further employ an augmentation-based approach to train these layers in a self-supervised manner on a small-scale dataset, eliminating the need for explicit motion annotation. Both components operate independently, allowing individual or combined control, and can generalize to open-domain scenarios. Extensive experiments demonstrate the superiority and effectiveness of our method. Project page: //direct-a-video.github.io/.

Graph Anomaly Detection (GAD) is a technique used to identify abnormal nodes within graphs, finding applications in network security, fraud detection, social media spam detection, and various other domains. A common method for GAD is Graph Auto-Encoders (GAEs), which encode graph data into node representations and identify anomalies by assessing the reconstruction quality of the graphs based on these representations. However, existing GAE models are primarily optimized for direct link reconstruction, resulting in nodes connected in the graph being clustered in the latent space. As a result, they excel at detecting cluster-type structural anomalies but struggle with more complex structural anomalies that do not conform to clusters. To address this limitation, we propose a novel solution called GAD-NR, a new variant of GAE that incorporates neighborhood reconstruction for graph anomaly detection. GAD-NR aims to reconstruct the entire neighborhood of a node, encompassing the local structure, self-attributes, and neighbor attributes, based on the corresponding node representation. By comparing the neighborhood reconstruction loss between anomalous nodes and normal nodes, GAD-NR can effectively detect any anomalies. Extensive experimentation conducted on six real-world datasets validates the effectiveness of GAD-NR, showcasing significant improvements (by up to 30% in AUC) over state-of-the-art competitors. The source code for GAD-NR is openly available. Importantly, the comparative analysis reveals that the existing methods perform well only in detecting one or two types of anomalies out of the three types studied. In contrast, GAD-NR excels at detecting all three types of anomalies across the datasets, demonstrating its comprehensive anomaly detection capabilities.

Vision Transformers (ViTs) have emerged as powerful models in the field of computer vision, delivering superior performance across various vision tasks. However, the high computational complexity poses a significant barrier to their practical applications in real-world scenarios. Motivated by the fact that not all tokens contribute equally to the final predictions and fewer tokens bring less computational cost, reducing redundant tokens has become a prevailing paradigm for accelerating vision transformers. However, we argue that it is not optimal to either only reduce inattentive redundancy by token pruning, or only reduce duplicative redundancy by token merging. To this end, in this paper we propose a novel acceleration framework, namely token Pruning & Pooling Transformers (PPT), to adaptively tackle these two types of redundancy in different layers. By heuristically integrating both token pruning and token pooling techniques in ViTs without additional trainable parameters, PPT effectively reduces the model complexity while maintaining its predictive accuracy. For example, PPT reduces over 37% FLOPs and improves the throughput by over 45% for DeiT-S without any accuracy drop on the ImageNet dataset. The code is available at //github.com/xjwu1024/PPT and //github.com/mindspore-lab/models/

We introduce DrawTalking, a prototype system enabling an approach that empowers users to build interactive worlds by sketching and speaking. The approach emphasizes user control and flexibility, and gives programming-like capability without requiring code. An early open-ended study shows the mechanics resonate and are applicable to many creative-exploratory use cases, with the potential to inspire and inform research in future natural interfaces for creative exploration and authoring.

Commit messages explain code changes in a commit and facilitate collaboration among developers. Several commit message generation approaches have been proposed; however, they exhibit limited success in capturing the context of code changes. We propose Comet (Context-Aware Commit Message Generation), a novel approach that captures context of code changes using a graph-based representation and leverages a transformer-based model to generate high-quality commit messages. Our proposed method utilizes delta graph that we developed to effectively represent code differences. We also introduce a customizable quality assurance module to identify optimal messages, mitigating subjectivity in commit messages. Experiments show that Comet outperforms state-of-the-art techniques in terms of bleu-norm and meteor metrics while being comparable in terms of rogue-l. Additionally, we compare the proposed approach with the popular gpt-3.5-turbo model, along with gpt-4-turbo; the most capable GPT model, over zero-shot, one-shot, and multi-shot settings. We found Comet outperforming the GPT models, on five and four metrics respectively and provide competitive results with the two other metrics. The study has implications for researchers, tool developers, and software developers. Software developers may utilize Comet to generate context-aware commit messages. Researchers and tool developers can apply the proposed delta graph technique in similar contexts, like code review summarization.

Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by [16]. Our codes are publicly available at //github.com/google-research/google-research/tree/master/cluster_gcn.

Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.

北京阿比特科技有限公司