Sparse linear regression methods for high-dimensional data commonly assume that residuals have constant variance, which can be violated in practice. For example, Aphasia Quotient (AQ) is a critical measure of language impairment and informs treatment decisions, but it is challenging to measure in stroke patients. It is of interest to use high-resolution T2 neuroimages of brain damage to predict AQ. However, sparse regression models show marked evidence of heteroscedastic error even after transformations are applied. This violation of the homoscedasticity assumption can lead to bias in estimated coefficients, prediction intervals (PI) with improper length, and increased type I errors. Bayesian heteroscedastic linear regression models relax the homoscedastic error assumption but can enforce restrictive prior assumptions on parameters, and many are computationally infeasible in the high-dimensional setting. This paper proposes estimating high-dimensional heteroscedastic linear regression models using a heteroscedastic partitioned empirical Bayes Expectation Conditional Maximization (H-PROBE) algorithm. H-PROBE is a computationally efficient maximum a posteriori estimation approach that requires minimal prior assumptions and can incorporate covariates hypothesized to impact heterogeneity. We apply this method by using high-dimensional neuroimages to predict and provide PIs for AQ that accurately quantify predictive uncertainty. Our analysis demonstrates that H-PROBE can provide narrower PI widths than standard methods without sacrificing coverage. Narrower PIs are clinically important for determining the risk of moderate to severe aphasia. Additionally, through extensive simulation studies, we exhibit that H-PROBE results in superior prediction, variable selection, and predictive inference compared to alternative methods.
Necessary and sufficient conditions of uniform consistency are explored. A hypothesis is simple. Nonparametric sets of alternatives are bounded convex sets in $\mathbb{L}_p$, $p >1$ with "small" balls deleted. The "small" balls have the center at the point of hypothesis and radii of balls tend to zero as sample size increases. For problem of hypothesis testing on a density, we show that, for the sets of alternatives, there are uniformly consistent tests for some sequence of radii of the balls, if and only if, convex set is relatively compact. The results are established for problem of hypothesis testing on a density, for signal detection in Gaussian white noise, for linear ill-posed problems with random Gaussian noise and so on.
In recent years, operator learning, particularly the DeepONet, has received much attention for efficiently learning complex mappings between input and output functions across diverse fields. However, in practical scenarios with limited and noisy data, accessing the uncertainty in DeepONet predictions becomes essential, especially in mission-critical or safety-critical applications. Existing methods, either computationally intensive or yielding unsatisfactory uncertainty quantification, leave room for developing efficient and informative uncertainty quantification (UQ) techniques tailored for DeepONets. In this work, we proposed a novel inference approach for efficient UQ for operator learning by harnessing the power of the Ensemble Kalman Inversion (EKI) approach. EKI, known for its derivative-free, noise-robust, and highly parallelizable feature, has demonstrated its advantages for UQ for physics-informed neural networks [28]. Our innovative application of EKI enables us to efficiently train ensembles of DeepONets while obtaining informative uncertainty estimates for the output of interest. We deploy a mini-batch variant of EKI to accommodate larger datasets, mitigating the computational demand due to large datasets during the training stage. Furthermore, we introduce a heuristic method to estimate the artificial dynamics covariance, thereby improving our uncertainty estimates. Finally, we demonstrate the effectiveness and versatility of our proposed methodology across various benchmark problems, showcasing its potential to address the pressing challenges of uncertainty quantification in DeepONets, especially for practical applications with limited and noisy data.
A component-splitting method is proposed to improve convergence characteristics for implicit time integration of compressible multicomponent reactive flows. The characteristic decomposition of flux jacobian of multicomponent Navier-Stokes equations yields a large sparse eigensystem, presenting challenges of slow convergence and high computational costs for implicit methods. To addresses this issue, the component-splitting method segregates the implicit operator into two parts: one for the flow equations (density/momentum/energy) and the other for the component equations. Each part's implicit operator employs flux-vector splitting based on their respective spectral radii to achieve accelerated convergence. This approach improves the computational efficiency of implicit iteration, mitigating the quadratic increase in time cost with the number of species. Two consistence corrections are developed to reduce the introduced component-splitting error and ensure the numerical consistency of mass fraction. Importantly, the impact of component-splitting method on accuracy is minimal as the residual approaches convergence. The accuracy, efficiency, and robustness of component-splitting method are thoroughly investigated and compared with the coupled implicit scheme through several numerical cases involving thermo-chemical nonequilibrium hypersonic flows. The results demonstrate that the component-splitting method decreases the required number of iteration steps for convergence of residual and wall heat flux, decreases the computation time per iteration step, and diminishes the residual to lower magnitude. The acceleration efficiency is enhanced with increases in CFL number and number of species.
As the development of formal proofs is a time-consuming task, it is important to devise ways of sharing the already written proofs to prevent wasting time redoing them. One of the challenges in this domain is to translate proofs written in proof assistants based on impredicative logics to proof assistants based on predicative logics, whenever impredicativity is not used in an essential way. In this paper we present a transformation for sharing proofs with a core predicative system supporting prenex universe polymorphism (like in Agda). It consists in trying to elaborate each term into a predicative universe polymorphic term as general as possible. The use of universe polymorphism is justified by the fact that mapping each universe to a fixed one in the target theory is not sufficient in most cases. During the elaboration, we need to solve unification problems in the equational theory of universe levels. In order to do this, we give a complete characterization of when a single equation admits a most general unifier. This characterization is then employed in a partial algorithm which uses a constraint-postponement strategy for trying to solve unification problems. The proposed translation is of course partial, but in practice allows one to translate many proofs that do not use impredicativity in an essential way. Indeed, it was implemented in the tool Predicativize and then used to translate semi-automatically many non-trivial developments from Matita's library to Agda, including proofs of Bertrand's Postulate and Fermat's Little Theorem, which (as far as we know) were not available in Agda yet.
It is well known that Newton's method, especially when applied to large problems such as the discretization of nonlinear partial differential equations (PDEs), can have trouble converging if the initial guess is too far from the solution. This work focuses on accelerating this convergence, in the context of the discretization of nonlinear elliptic PDEs. We first provide a quick review of existing methods, and justify our choice of learning an initial guess with a Fourier neural operator (FNO). This choice was motivated by the mesh-independence of such operators, whose training and evaluation can be performed on grids with different resolutions. The FNO is trained using a loss minimization over generated data, loss functions based on the PDE discretization. Numerical results, in one and two dimensions, show that the proposed initial guess accelerates the convergence of Newton's method by a large margin compared to a naive initial guess, especially for highly nonlinear or anisotropic problems.
Covariate adjustment can improve precision in analyzing randomized experiments. With fully observed data, regression adjustment and propensity score weighting are asymptotically equivalent in improving efficiency over unadjusted analysis. When some outcomes are missing, we consider combining these two adjustment methods with inverse probability of observation weighting for handling missing outcomes, and show that the equivalence between the two methods breaks down. Regression adjustment no longer ensures efficiency gain over unadjusted analysis unless the true outcome model is linear in covariates or the outcomes are missing completely at random. Propensity score weighting, in contrast, still guarantees efficiency over unadjusted analysis, and including more covariates in adjustment never harms asymptotic efficiency. Moreover, we establish the value of using partially observed covariates to secure additional efficiency by the missingness indicator method, which imputes all missing covariates by zero and uses the union of the completed covariates and corresponding missingness indicators as the new, fully observed covariates. Based on these findings, we recommend using regression adjustment in combination with the missingness indicator method if the linear outcome model or missing complete at random assumption is plausible and using propensity score weighting with the missingness indicator method otherwise.
For data segmentation in high-dimensional linear regression settings, the regression parameters are often assumed to be sparse segment-wise, which enables many existing methods to estimate the parameters locally via $\ell_1$-regularised maximum likelihood-type estimation and then contrast them for change point detection. Contrary to this common practice, we show that the sparsity of neither regression parameters nor their differences, a.k.a. differential parameters, is necessary for consistency in multiple change point detection. In fact, both statistically and computationally, better efficiency is attained by a simple strategy that scans for large discrepancies in local covariance between the regressors and the response. We go a step further and propose a suite of tools for directly inferring about the differential parameters post-segmentation, which are applicable even when the regression parameters themselves are non-sparse. Theoretical investigations are conducted under general conditions permitting non-Gaussianity, temporal dependence and ultra-high dimensionality. Numerical results from simulated and macroeconomic datasets demonstrate the competitiveness and efficacy of the proposed methods.
The consistency of the maximum likelihood estimator for mixtures of elliptically-symmetric distributions for estimating its population version is shown, where the underlying distribution $P$ is nonparametric and does not necessarily belong to the class of mixtures on which the estimator is based. In a situation where $P$ is a mixture of well enough separated but nonparametric distributions it is shown that the components of the population version of the estimator correspond to the well separated components of $P$. This provides some theoretical justification for the use of such estimators for cluster analysis in case that $P$ has well separated subpopulations even if these subpopulations differ from what the mixture model assumes.
The future development of an AI scientist, a tool that is capable of integrating a variety of experimental data and generating testable hypotheses, holds immense potential. So far, bespoke machine learning models have been created to specialize in singular scientific tasks, but otherwise lack the flexibility of a general purpose model. Here, we show that a general purpose large language model, chatGPT 3.5-turbo, can be fine-tuned to learn the structural biophysics of DNA. We find that both fine-tuning models to return chain-of-thought responses and chaining together models fine-tuned for subtasks have an enhanced ability to analyze and design DNA sequences and their structures.
The deconfounder was proposed as a method for estimating causal parameters in a context with multiple causes and unobserved confounding. It is based on recovery of a latent variable from the observed causes. We disentangle the causal interpretation from the statistical estimation problem and show that the deconfounder in general estimates adjusted regression target parameters. It does so by outcome regression adjusted for the recovered latent variable termed the substitute. We refer to the general algorithm, stripped of causal assumptions, as substitute adjustment. We give theoretical results to support that substitute adjustment estimates adjusted regression parameters when the regressors are conditionally independent given the latent variable. We also introduce a variant of our substitute adjustment algorithm that estimates an assumption-lean target parameter with minimal model assumptions. We then give finite sample bounds and asymptotic results supporting substitute adjustment estimation in the case where the latent variable takes values in a finite set. A simulation study illustrates finite sample properties of substitute adjustment. Our results support that when the latent variable model of the regressors hold, substitute adjustment is a viable method for adjusted regression.