Data-driven learning based methods have recently been particularly successful at learning robust locomotion controllers for a variety of unstructured terrains. Prior work has shown that incorporating good locomotion priors in the form of trajectory generators (TGs) is effective at efficiently learning complex locomotion skills. However, defining a good, single TG as tasks/environments become increasingly more complex remains a challenging problem as it requires extensive tuning and risks reducing the effectiveness of the prior. In this paper, we present Evolved Environmental Trajectory Generators (EETG), a method that learns a diverse set of specialised locomotion priors using Quality-Diversity algorithms while maintaining a single policy within the Policies Modulating TG (PMTG) architecture. The results demonstrate that EETG enables a quadruped robot to successfully traverse a wide range of environments, such as slopes, stairs, rough terrain, and balance beams. Our experiments show that learning a diverse set of specialized TG priors is significantly (5 times) more efficient than using a single, fixed prior when dealing with a wide range of environments.
Transfer learning boosts the performance of medical image analysis by enabling deep learning (DL) on small datasets through the knowledge acquired from large ones. As the number of DL architectures explodes, exhaustively attempting all candidates becomes unfeasible, motivating cheaper alternatives for choosing them. Transferability scoring methods emerge as an enticing solution, allowing to efficiently calculate a score that correlates with the architecture accuracy on any target dataset. However, since transferability scores have not been evaluated on medical datasets, their use in this context remains uncertain, preventing them from benefiting practitioners. We fill that gap in this work, thoroughly evaluating seven transferability scores in three medical applications, including out-of-distribution scenarios. Despite promising results in general-purpose datasets, our results show that no transferability score can reliably and consistently estimate target performance in medical contexts, inviting further work in that direction.
Cultural heritage applications and advanced machine learning models are creating a fruitful synergy to provide effective and accessible ways of interacting with artworks. Smart audio-guides, personalized art-related content and gamification approaches are just a few examples of how technology can be exploited to provide additional value to artists or exhibitions. Nonetheless, from a machine learning point of view, the amount of available artistic data is often not enough to train effective models. Off-the-shelf computer vision modules can still be exploited to some extent, yet a severe domain shift is present between art images and standard natural image datasets used to train such models. As a result, this can lead to degraded performance. This paper introduces a novel approach to address the challenges of limited annotated data and domain shifts in the cultural heritage domain. By leveraging generative vision-language models, we augment art datasets by generating diverse variations of artworks conditioned on their captions. This augmentation strategy enhances dataset diversity, bridging the gap between natural images and artworks, and improving the alignment of visual cues with knowledge from general-purpose datasets. The generated variations assist in training vision and language models with a deeper understanding of artistic characteristics and that are able to generate better captions with appropriate jargon.
Representation learning methods have revolutionized machine learning on networks by converting discrete network structures into continuous domains. However, dynamic networks that evolve over time pose new challenges. To address this, dynamic representation learning methods have gained attention, offering benefits like reduced learning time and improved accuracy by utilizing temporal information. T-batching is a valuable technique for training dynamic network models that reduces training time while preserving vital conditions for accurate modeling. However, we have identified a limitation in the training loss function used with t-batching. Through mathematical analysis, we propose two alternative loss functions that overcome these issues, resulting in enhanced training performance. We extensively evaluate the proposed loss functions on synthetic and real-world dynamic networks. The results consistently demonstrate superior performance compared to the original loss function. Notably, in a real-world network characterized by diverse user interaction histories, the proposed loss functions achieved more than 26.9% enhancement in Mean Reciprocal Rank (MRR) and more than 11.8% improvement in Recall@10. These findings underscore the efficacy of the proposed loss functions in dynamic network modeling.
ChatGPT can improve Software Engineering (SE) research practices by offering efficient, accessible information analysis and synthesis based on natural language interactions. However, ChatGPT could bring ethical challenges, encompassing plagiarism, privacy, data security, and the risk of generating biased or potentially detrimental data. This research aims to fill the given gap by elaborating on the key elements: motivators, demotivators, and ethical principles of using ChatGPT in SE research. To achieve this objective, we conducted a literature survey, identified the mentioned elements, and presented their relationships by developing a taxonomy. Further, the identified literature-based elements (motivators, demotivators, and ethical principles) were empirically evaluated by conducting a comprehensive questionnaire-based survey involving SE researchers. Additionally, we employed Interpretive Structure Modeling (ISM) approach to analyze the relationships between the ethical principles of using ChatGPT in SE research and develop a level based decision model. We further conducted a Cross-Impact Matrix Multiplication Applied to Classification (MICMAC) analysis to create a cluster-based decision model. These models aim to help SE researchers devise effective strategies for ethically integrating ChatGPT into SE research by following the identified principles through adopting the motivators and addressing the demotivators. The findings of this study will establish a benchmark for incorporating ChatGPT services in SE research with an emphasis on ethical considerations.
Non-volatile memory (NVM) crossbars have been identified as a promising technology, for accelerating important machine learning operations, with matrix-vector multiplication being a key example. Binary neural networks (BNNs) are especially well-suited for use with NVM crossbars due to their use of a low-bitwidth representation for both activations and weights. However, the aggressive quantization of BNNs can result in suboptimal accuracy, and the analog effects of NVM crossbars can further degrade the accuracy during inference. This paper presents a comprehensive study that benchmarks BNNs trained and validated on ImageNet and deployed on NeuroSim, a simulator for NVM-crossbar-based PIM architecture. Our study analyzes the impact of various parameters, such as input precision and ADC resolution, on both the accuracy of the inference and the hardware performance metrics. We have found that an ADC resolution of 8-bit with an input precision of 4-bit achieves near-optimal accuracy compared to the original BNNs. In addition, we have identified bottleneck components in the PIM architecture that affect area, latency, and energy consumption, and we demonstrate the impact that different BNN layers have on hardware performance.
We propose a multi-step training method for designing generalized linear classifiers. First, an initial multi-class linear classifier is found through regression. Then validation error is minimized by pruning of unnecessary inputs. Simultaneously, desired outputs are improved via a method similar to the Ho-Kashyap rule. Next, the output discriminants are scaled to be net functions of sigmoidal output units in a generalized linear classifier. We then develop a family of batch training algorithm for the multi layer perceptron that optimizes its hidden layer size and number of training epochs. Next, we combine pruning with a growing approach. Later, the input units are scaled to be the net function of the sigmoidal output units that are then feed into as input to the MLP. We then propose resulting improvements in each of the deep learning blocks thereby improving the overall performance of the deep architecture. We discuss the principles and formulation regarding learning algorithms for deep autoencoders. We investigate several problems in deep autoencoders networks including training issues, the theoretical, mathematical and experimental justification that the networks are linear, optimizing the number of hidden units in each layer and determining the depth of the deep learning model. A direct implication of the current work is the ability to construct fast deep learning models using desktop level computational resources. This, in our opinion, promotes our design philosophy of building small but powerful algorithms. Performance gains are demonstrated at each step. Using widely available datasets, the final network's ten fold testing error is shown to be less than that of several other linear, generalized linear classifiers, multi layer perceptron and deep learners reported in the literature.
Machine learning (ML) components are being added to more and more critical and impactful software systems, but the software development process of real-world production systems from prototyped ML models remains challenging with additional complexity and interdisciplinary collaboration challenges. This poses difficulties in using traditional software lifecycle models such as waterfall, spiral or agile model when building ML-enabled systems. By interviewing with practitioners from multiple companies, we investigated the application of using systems engineering process in ML-enabled systems. We developed a set of propositions and proposed V4ML process model for building products with ML components. We found that V4ML process model requires more efforts on documentation, system decomposition and V&V, but it addressed the interdisciplinary collaboration challenges and additional complexity introduced by ML components.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.