Self-supervised pretraining on unlabeled data followed by supervised fine-tuning on labeled data is a popular paradigm for learning from limited labeled examples. We extend this paradigm to the classical positive unlabeled (PU) setting, where the task is to learn a binary classifier given only a few labeled positive samples, and (often) a large amount of unlabeled samples (which could be positive or negative). We first propose a simple extension of standard infoNCE family of contrastive losses, to the PU setting; and show that this learns superior representations, as compared to existing unsupervised and supervised approaches. We then develop a simple methodology to pseudo-label the unlabeled samples using a new PU-specific clustering scheme; these pseudo-labels can then be used to train the final (positive vs. negative) classifier. Our method handily outperforms state-of-the-art PU methods over several standard PU benchmark datasets, while not requiring a-priori knowledge of any class prior (which is a common assumption in other PU methods). We also provide a simple theoretical analysis that motivates our methods.
In anytime-valid sequential inference, it is known that any admissible procedure must be based on e-processes, which are composite generalizations of test martingales that quantify the accumulated evidence against a composite null hypothesis at any arbitrary stopping time. This paper studies methods for combining e-processes constructed using different information sets (filtrations) for the same null. Although e-processes constructed in the same filtration can be combined effortlessly (e.g., by averaging), e-processes constructed in different filtrations cannot, because their validity in a coarser filtration does not translate to validity in a finer filtration. This issue arises in exchangeability tests, independence tests, and tests for comparing forecasts with lags. We first establish that a class of functions called adjusters allows us to lift e-processes from a coarser filtration into any finer filtration. We then introduce a characterization theorem for adjusters, formalizing a sense in which using adjusters is necessary. There are two major implications. First, if we have a powerful e-process in a coarsened filtration, then we readily have a powerful e-process in the original filtration. Second, when we coarsen the filtration to construct an e-process, there is an asymptotically logarithmic cost of recovering anytime-validity in the original filtration.
Should prediction models always deliver a prediction? In the pursuit of maximum predictive performance, critical considerations of reliability and fairness are often overshadowed, particularly when it comes to the role of uncertainty. Selective regression, also known as the "reject option," allows models to abstain from predictions in cases of considerable uncertainty. Initially proposed seven decades ago, approaches to selective regression have mostly focused on distribution-based proxies for measuring uncertainty, particularly conditional variance. However, this focus neglects the significant influence of model-specific biases on a model's performance. In this paper, we propose a novel approach to selective regression by leveraging conformal prediction, which provides grounded confidence measures for individual predictions based on model-specific biases. In addition, we propose a standardized evaluation framework to allow proper comparison of selective regression approaches. Via an extensive experimental approach, we demonstrate how our proposed approach, conformalized selective regression, demonstrates an advantage over multiple state-of-the-art baselines.
We propose a novel method of network detection that is robust against any complex dependence structure. Our goal is to conduct exploratory network detection, meaning that we attempt to detect a network composed of ``connectable'' edges that are worth investigating in detail for further modelling or precise network analysis. For a reproducible network detection, we pursuit high power while controlling the false discovery rate (FDR). In particular, we formalize the problem as a multiple testing, and propose p-variables that are used in the Benjamini-Hochberg procedure. We show that the proposed method controls the FDR under arbitrary dependence structure with any sample size, and has asymptotic power one. The validity is also confirmed by simulations and a real data example.
Current Multimodal Knowledge Graph Construction (MKGC) models struggle with the real-world dynamism of continuously emerging entities and relations, often succumbing to catastrophic forgetting-loss of previously acquired knowledge. This study introduces benchmarks aimed at fostering the development of the continual MKGC domain. We further introduce MSPT framework, designed to surmount the shortcomings of existing MKGC approaches during multimedia data processing. MSPT harmonizes the retention of learned knowledge (stability) and the integration of new data (plasticity), outperforming current continual learning and multimodal methods. Our results confirm MSPT's superior performance in evolving knowledge environments, showcasing its capacity to navigate balance between stability and plasticity.
We propose a novel approach to the problem of mutual information (MI) estimation via introducing a family of estimators based on normalizing flows. The estimator maps original data to the target distribution, for which MI is easier to estimate. We additionally explore the target distributions with known closed-form expressions for MI. Theoretical guarantees are provided to demonstrate that our approach yields MI estimates for the original data. Experiments with high-dimensional data are conducted to highlight the practical advantages of the proposed method.
In the modern world, the amount of visual data recorded has been rapidly increasing. In many cases, data is stored in geographically distinct locations and thus requires a large amount of time and space to consolidate. Sometimes, there are also regulations for privacy protection which prevent data consolidation. In this work, we present federated implementations for object detection and recognition using a federated Faster R-CNN (FRCNN) and image segmentation using a federated Fully Convolutional Network (FCN). Our FRCNN was trained on 5000 examples of the COCO2017 dataset while our FCN was trained on the entire train set of the CamVid dataset. The proposed federated models address the challenges posed by the increasing volume and decentralized nature of visual data, offering efficient solutions in compliance with privacy regulations.
The inadequate mixing of conventional Markov Chain Monte Carlo (MCMC) methods for multi-modal distributions presents a significant challenge in practical applications such as Bayesian inference and molecular dynamics. Addressing this, we propose Diffusive Gibbs Sampling (DiGS), an innovative family of sampling methods designed for effective sampling from distributions characterized by distant and disconnected modes. DiGS integrates recent developments in diffusion models, leveraging Gaussian convolution to create an auxiliary noisy distribution that bridges isolated modes in the original space and applying Gibbs sampling to alternately draw samples from both spaces. A novel Metropolis-within-Gibbs scheme is proposed to enhance mixing in the denoising sampling step. DiGS exhibits a better mixing property for sampling multi-modal distributions than state-of-the-art methods such as parallel tempering, attaining substantially improved performance across various tasks, including mixtures of Gaussians, Bayesian neural networks and molecular dynamics.
We present a novel quasi-Monte Carlo mechanism to improve graph-based sampling, coined repelling random walks. By inducing correlations between the trajectories of an interacting ensemble such that their marginal transition probabilities are unmodified, we are able to explore the graph more efficiently, improving the concentration of statistical estimators whilst leaving them unbiased. The mechanism has a trivial drop-in implementation. We showcase the effectiveness of repelling random walks in a range of settings including estimation of graph kernels, the PageRank vector and graphlet concentrations. We provide detailed experimental evaluation and robust theoretical guarantees. To our knowledge, repelling random walks constitute the first rigorously studied quasi-Monte Carlo scheme correlating the directions of walkers on a graph, inviting new research in this exciting nascent domain.
This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.