Since ChatGPT released its API for public use, the number of applications built on top of commercial large language models (LLMs) increase exponentially. One popular usage of such models is leveraging its in-context learning ability and generating responses given user queries leveraging knowledge obtained by retrieval augmentation. One problem of deploying commercial retrieval-augmented LLMs is the cost due to the additionally retrieved context that largely increases the input token size of the LLMs. To mitigate this, we propose a token compression scheme that includes two methods: summarization compression and semantic compression. The first method applies a T5-based model that is fine-tuned by datasets generated using self-instruct containing samples with varying lengths and reduce token size by doing summarization. The second method further compresses the token size by removing words with lower impact on the semantic. In order to adequately evaluate the effectiveness of the proposed methods, we propose and utilize a dataset called Food-Recommendation DB (FRDB) focusing on food recommendation for women around pregnancy period or infants. Our summarization compression can reduce 65% of the retrieval token size with further 0.3% improvement on the accuracy; semantic compression provides a more flexible way to trade-off the token size with performance, for which we can reduce the token size by 20% with only 1.6% of accuracy drop.
Temporal Knowledge Graph (TKG) representation learning embeds entities and event types into a continuous low-dimensional vector space by integrating the temporal information, which is essential for downstream tasks, e.g., event prediction and question answering. Existing methods stack multiple graph convolution layers to model the influence of distant entities, leading to the over-smoothing problem. To alleviate the problem, recent studies infuse reinforcement learning to obtain paths that contribute to modeling the influence of distant entities. However, due to the limited number of hops, these studies fail to capture the correlation between entities that are far apart and even unreachable. To this end, we propose GTRL, an entity Group-aware Temporal knowledge graph Representation Learning method. GTRL is the first work that incorporates the entity group modeling to capture the correlation between entities by stacking only a finite number of layers. Specifically, the entity group mapper is proposed to generate entity groups from entities in a learning way. Based on entity groups, the implicit correlation encoder is introduced to capture implicit correlations between any pairwise entity groups. In addition, the hierarchical GCNs are exploited to accomplish the message aggregation and representation updating on the entity group graph and the entity graph. Finally, GRUs are employed to capture the temporal dependency in TKGs. Extensive experiments on three real-world datasets demonstrate that GTRL achieves the state-of-the-art performances on the event prediction task, outperforming the best baseline by an average of 13.44%, 9.65%, 12.15%, and 15.12% in MRR, Hits@1, Hits@3, and Hits@10, respectively.
Recent progress in large language models (LLMs) has demonstrated the ability to learn and leverage Internet-scale knowledge through pre-training with autoregressive models. Unfortunately, applying such models to settings with embodied agents, such as robots, is challenging due to their lack of experience with the physical world, inability to parse non-language observations, and ignorance of rewards or safety constraints that robots may require. On the other hand, language-conditioned robotic policies that learn from interaction data can provide the necessary grounding that allows the agent to be correctly situated in the real world, but such policies are limited by the lack of high-level semantic understanding due to the limited breadth of the interaction data available for training them. Thus, if we want to make use of the semantic knowledge in a language model while still situating it in an embodied setting, we must construct an action sequence that is both likely according to the language model and also realizable according to grounded models of the environment. We frame this as a problem similar to probabilistic filtering: decode a sequence that both has high probability under the language model and high probability under a set of grounded model objectives. We demonstrate how such grounded models can be obtained across three simulation and real-world domains, and that the proposed decoding strategy is able to solve complex, long-horizon embodiment tasks in a robotic setting by leveraging the knowledge of both models. The project's website can be found at grounded-decoding.github.io.
We introduce EQ-Bench, a novel benchmark designed to evaluate aspects of emotional intelligence in Large Language Models (LLMs). We assess the ability of LLMs to understand complex emotions and social interactions by asking them to predict the intensity of emotional states of characters in a dialogue. The benchmark is able to discriminate effectively between a wide range of models. We find that EQ-Bench correlates strongly with comprehensive multi-domain benchmarks like MMLU (Hendrycks et al., 2020) (r=0.97), indicating that we may be capturing similar aspects of broad intelligence. Our benchmark produces highly repeatable results using a set of 60 English-language questions. We also provide open-source code for an automated benchmarking pipeline at //github.com/EQ-bench/EQ-Bench and a leaderboard at //www.eqbench.com
The increasing popularity of large language models (LLMs) has paved the way for their application in diverse domains. This paper proposes a benchmarking framework tailored specifically for evaluating LLM performance in the context of Verilog code generation for hardware design and verification. We present a comprehensive evaluation dataset consisting of 156 problems from the Verilog instructional website HDLBits. The evaluation set consists of a diverse set of Verilog code generation tasks, ranging from simple combinational circuits to complex finite state machines. The Verilog code completions can be automatically tested for functional correctness by comparing the transient simulation outputs of the generated design with a golden solution. We also demonstrate that the Verilog code generation capability of pretrained language models could be improved with supervised fine-tuning by bootstrapping with LLM generated synthetic problem-code pairs.
Recent advances in large language models have demonstrated remarkable effectiveness in information retrieval (IR) tasks. While many neural IR systems encode queries and documents into single-vector representations, multi-vector models elevate the retrieval quality by producing multi-vector representations and facilitating similarity searches at the granularity of individual tokens. However, these models significantly amplify memory and storage requirements for retrieval indices by an order of magnitude. This escalation in index size renders the scalability of multi-vector IR models progressively challenging due to their substantial memory demands. We introduce Embedding from Storage Pipelined Network (ESPN) where we offload the entire re-ranking embedding tables to SSDs and reduce the memory requirements by 5-16x. We design a software prefetcher with hit rates exceeding 90%, improving SSD based retrieval up to 6.4x, and demonstrate that we can maintain near memory levels of query latency even for large query batch sizes.
This study delves into the application of Generative Adversarial Networks (GANs) within the context of imbalanced datasets. Our primary aim is to enhance the performance and stability of GANs in such datasets. In pursuit of this objective, we introduce a novel network architecture known as Damage GAN, building upon the ContraD GAN framework which seamlessly integrates GANs and contrastive learning. Through the utilization of contrastive learning, the discriminator is trained to develop an unsupervised representation capable of distinguishing all provided samples. Our approach draws inspiration from the straightforward framework for contrastive learning of visual representations (SimCLR), leading to the formulation of a distinctive loss function. We also explore the implementation of self-damaging contrastive learning (SDCLR) to further enhance the optimization of the ContraD GAN model. Comparative evaluations against baseline models including the deep convolutional GAN (DCGAN) and ContraD GAN demonstrate the evident superiority of our proposed model, Damage GAN, in terms of generated image distribution, model stability, and image quality when applied to imbalanced datasets.
Protecting the copyright of large language models (LLMs) has become crucial due to their resource-intensive training and accompanying carefully designed licenses. However, identifying the original base model of an LLM is challenging due to potential parameter alterations through fine-tuning or continued pretraining. In this study, we introduce HuRef, a human-readable fingerprint for LLMs that uniquely identifies the base model without exposing model parameters or interfering with training. We first observe that the vector direction of LLM parameters remains stable after the model has converged during pretraining, showing negligible perturbations through subsequent training steps, including continued pretraining, supervised fine-tuning (SFT), and RLHF, which makes it a sufficient condition to identify the base model. The necessity is validated by continuing to train an LLM with an extra term to drive away the model parameters' direction and the model becomes damaged. However, this direction is vulnerable to simple attacks like dimension permutation or matrix rotation, which significantly change it without affecting performance. To address this, leveraging the Transformer structure, we systematically analyze potential attacks and define three invariant terms that identify an LLM's base model. We make these invariant terms human-readable by mapping them to a Gaussian vector using a convolutional encoder and then converting it into a natural image with StyleGAN2. Our method generates a dog image as an identity fingerprint for an LLM, where the dog's appearance strongly indicates the LLM's base model. Experimental results across various LLMs demonstrate the effectiveness of our method, the generated dog image remains invariant to different training steps, including SFT, RLHF, or even continued pretraining with augmented vocabulary in a new language.
Large language models (LLMs) with billions of parameters and pretrained on massive amounts of data are now capable of near or better than state-of-the-art performance in a variety of downstream natural language processing tasks. Neural machine translation (NMT) is one such task that LLMs have been applied to with great success. However, little research has focused on applying LLMs to the more difficult subset of NMT called simultaneous translation (SimulMT), where translation begins before the entire source context is available to the model. In this paper, we address key challenges facing LLMs fine-tuned for SimulMT, validate classical SimulMT concepts and practices in the context of LLMs, explore adapting LLMs that are fine-tuned for NMT to the task of SimulMT, and introduce Simul-LLM, the first open-source fine-tuning and evaluation pipeline development framework for LLMs focused on SimulMT.
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.