Goal-directed manipulation of representations is a key element of human flexible behaviour, while consciousness is often related to several aspects of higher-order cognition and human flexibility. Currently these two phenomena are only partially integrated (e.g., see Neurorepresentationalism) and this (a) limits our understanding of neuro-computational processes that lead conscious states to produce flexible goal-directed behaviours, (b) prevents a computational formalisation of conscious goal-directed manipulations of representations occurring in the brain, and (c) inhibits the exploitation of this knowledge for modelling and technological purposes. Addressing these issues, here we extend our `three-component theory of flexible cognition' by proposing the `Goal-Aligning Representations Internal Manipulation' (GARIM) theory of conscious and flexible goal-directed cognition. The central idea of the theory is that conscious states support the active manipulation of goal-relevant internal representations (e.g., of world states, objects, and action sequences) to make them more aligned with the pursued goals. This leads to the generation of the knowledge which is necessary to face novel situations/goals, thus increasing the flexibility of goal-directed behaviours. The GARIM theory integrates key aspects of the main theories of consciousness into the functional neuro-computational framework of goal-directed behaviour. Moreover, it takes into account the subjective sensation of agency that accompanies conscious goal-directed processes (`GARIM agency'). The proposal has also implications for experimental studies on consciousness and clinical aspects of conscious goal-directed behaviour. Finally, the GARIM theory benefit technological fields such as autonomous robotics and machine learning (e.g., the manipulation process may describe the operations performed by systems based on transformers).
Low-precision fine-tuning of language models has gained prominence as a cost-effective and energy-efficient approach to deploying large-scale models in various applications. However, this approach is susceptible to the existence of outlier values in activation. The outlier values in the activation can negatively affect the performance of fine-tuning language models in the low-precision regime since they affect the scaling factor and thus make representing smaller values harder. This paper investigates techniques for mitigating outlier activation in low-precision integer fine-tuning of the language models. Our proposed novel approach enables us to represent the outlier activation values in 8-bit integers instead of floating-point (FP16) values. The benefit of using integers for outlier values is that it enables us to use operator tiling to avoid performing 16-bit integer matrix multiplication to address this problem effectively. We provide theoretical analysis and supporting experiments to demonstrate the effectiveness of our approach in improving the robustness and performance of low-precision fine-tuned language models.
Chain-of-thought (CoT) reasoning has exhibited impressive performance in language models for solving complex tasks and answering questions. However, many real-world questions require multi-modal information, such as text and images. Previous research on multi-modal CoT has primarily focused on extracting fixed image features from off-the-shelf vision models and then fusing them with text using attention mechanisms. This approach has limitations because these vision models were not designed for complex reasoning tasks and do not align well with language thoughts. To overcome this limitation, we introduce a novel approach for multi-modal CoT reasoning that utilizes latent space learning via diffusion processes to generate effective image features that align with language thoughts. Our method fuses image features and text representations at a deep level and improves the complex reasoning ability of multi-modal CoT. We demonstrate the efficacy of our proposed method on multi-modal ScienceQA and machine translation benchmarks, achieving state-of-the-art performance on ScienceQA. Overall, our approach offers a more robust and effective solution for multi-modal reasoning in language models, enhancing their ability to tackle complex real-world problems.
Tensor-based representations are being increasingly used to represent complex data types such as imaging data, due to their appealing properties such as dimension reduction and the preservation of spatial information. Recently, there is a growing literature on using Bayesian scalar-on-tensor regression techniques that use tensor-based representations for high-dimensional and spatially distributed covariates to predict continuous outcomes. However surprisingly, there is limited development on corresponding Bayesian classification methods relying on tensor-valued covariates. Standard approaches that vectorize the image are not desirable due to the loss of spatial structure, and alternate methods that use extracted features from the image in the predictive model may suffer from information loss. We propose a novel data augmentation-based Bayesian classification approach relying on tensor-valued covariates, with a focus on imaging predictors. We propose two data augmentation schemes, one resulting in a support vector machine (SVM) classifier, and another yielding a logistic regression classifier. While both types of classifiers have been proposed independently in literature, our contribution is to extend such existing methodology to accommodate high-dimensional tensor valued predictors that involve low rank decompositions of the coefficient matrix while preserving the spatial information in the image. An efficient Markov chain Monte Carlo (MCMC) algorithm is developed for implementing these methods. Simulation studies show significant improvements in classification accuracy and parameter estimation compared to routinely used classification methods. We further illustrate our method in a neuroimaging application using cortical thickness MRI data from Alzheimer's Disease Neuroimaging Initiative, with results displaying better classification accuracy throughout several classification tasks.
Increasing and massive volumes of trajectory data are being accumulated that may serve a variety of applications, such as mining popular routes or identifying ridesharing candidates. As storing and querying massive trajectory data is costly, trajectory simplification techniques have been introduced that intuitively aim to reduce the sizes of trajectories, thus reducing storage and speeding up querying, while preserving as much information as possible. Existing techniques rely mainly on hand-crafted error measures when deciding which point to drop when simplifying a trajectory. While the hope may be that such simplification affects the subsequent usability of the data only minimally, the usability of the simplified data remains largely unexplored. Instead of using error measures that indirectly may to some extent yield simplified trajectories with high usability, we adopt a direct approach to simplification and present the first study of query accuracy driven trajectory simplification, where the direct objective is to achieve a simplified trajectory database that preserves the query accuracy of the original database as much as possible. Specifically, we propose a multi-agent reinforcement learning based solution with two agents working cooperatively to collectively simplify trajectories in a database while optimizing query usability. Extensive experiments on four real-world trajectory datasets show that the solution is capable of consistently outperforming baseline solutions over various query types and dynamics.
Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.