A compartmental deterministic model that allows (1) immunity from two stages of infection and carriage, and (2) disease induced death, is used in studying the dynamics of meningitis epidemic process in a closed population. It allows for difference in the transmission rate of infection to a susceptible by a carrier and an infective. It is generalized to allow a proportion ({\phi}) of those susceptibles infected to progress directly to infectives in stage I. Both models are used in this study. The threshold conditions for the spread of carrier and infectives in stage I are derived for the two models. Sensitivity analysis is performed on the reproductive number derived from the next generation matrix. The case-carrier ratio profile for various parameters and threshold values are shown. So also are the graphs of the total number ever infected as influenced by {\epsilon} and {\phi}. The infection transmission rate (\b{eta}), the odds in favor of a carrier, over an infective, in transmitting an infection to a susceptible ({\epsilon}) and the carrier conversion rate ({\phi}) to an infective in stage I, are identified as key parameters that should be subject of attention for any control intervention strategy. The case-carrier ratio profiles provide evidence of a critical case-carrier ratio attained before the number of reported cases grows to an epidemic level. They also provide visual evidence of epidemiological context, in this case, epidemic incidence (in later part of dry season) and endemic incidence (during rainy season). Results from total proportion ever infected suggest that the model, in which {\phi}=0 obtained, can adequately represent, in essence, the generalized model for this study.
Goal-oriented error estimation provides the ability to approximate the discretization error in a chosen functional quantity of interest. Adaptive mesh methods provide the ability to control this discretization error to obtain accurate quantity of interest approximations while still remaining computationally feasible. Traditional discrete goal-oriented error estimates incur linearization errors in their derivation. In this paper, we investigate the role of linearization errors in adaptive goal-oriented error simulations. In particular, we develop a novel two-level goal-oriented error estimate that is free of linearization errors. Additionally, we highlight how linearization errors can facilitate the verification of the adjoint solution used in goal-oriented error estimation. We then verify the newly proposed error estimate by applying it to a model nonlinear problem for several quantities of interest and further highlight its asymptotic effectiveness as mesh sizes are reduced. In an adaptive mesh context, we then compare the newly proposed estimate to a more traditional two-level goal-oriented error estimate. We highlight that accounting for linearization errors in the error estimate can improve its effectiveness in certain situations and demonstrate that localizing linearization errors can lead to more optimal adapted meshes.
Phylogenetic networks are a flexible model of evolution that can represent reticulate evolution and handle complex data. Tree-based networks, which are phylogenetic networks that have a spanning tree with the same root and leaf-set as the network itself, have been well studied. However, not all networks are tree-based. Francis-Semple-Steel (2018) thus introduced several indices to measure the deviation of rooted binary phylogenetic networks $N$ from being tree-based, such as the minimum number $\delta^\ast(N)$ of additional leaves needed to make $N$ tree-based, and the minimum difference $\eta^\ast(N)$ between the number of vertices of $N$ and the number of vertices of a subtree of $N$ that shares the root and leaf set with $N$. Hayamizu (2021) has established a canonical decomposition of almost-binary phylogenetic networks of $N$, called the maximal zig-zag trail decomposition, which has many implications including a linear time algorithm for computing $\delta^\ast(N)$. The Maximum Covering Subtree Problem (MCSP) is the problem of computing $\eta^\ast(N)$, and Davidov et al. (2022) showed that this can be solved in polynomial time (in cubic time when $N$ is binary) by an algorithm for the minimum cost flow problem. In this paper, under the assumption that $N$ is almost-binary (i.e. each internal vertex has in-degree and out-degree at most two), we show that $\delta^\ast(N)\leq \eta^\ast (N)$ holds, which is tight, and give a characterisation of such phylogenetic networks $N$ that satisfy $\delta^\ast(N)=\eta^\ast(N)$. Our approach uses the canonical decomposition of $N$ and focuses on how the maximal W-fences (i.e. the forbidden subgraphs of tree-based networks) are connected to maximal M-fences in the network $N$. Our results introduce a new class of phylogenetic networks for which MCSP can be solved in linear time, which can be seen as a generalisation of tree-based networks.
We present evidence that language models can learn meaning despite being trained only to perform next token prediction on text, specifically a corpus of programs. Each program is preceded by a specification in the form of (textual) input-output examples. Working with programs enables us to precisely define concepts relevant to meaning in language (e.g., correctness and semantics), making program synthesis well-suited as an intermediate testbed for characterizing the presence (or absence) of meaning in language models. We first train a Transformer model on the corpus of programs, then probe the trained model's hidden states as it completes a program given a specification. Despite providing no inductive bias toward learning the semantics of the language, we find that a linear probe is able to extract abstractions of both current and future program states from the model states. Moreover, there is a strong, statistically significant correlation between the accuracy of the probe and the model's ability to generate a program that implements the specification. To evaluate whether the semantics are represented in the model states rather than learned by the probe, we design a novel experimental procedure that intervenes on the semantics of the language while preserving the lexicon and syntax. We also demonstrate that the model learns to generate correct programs that are, on average, shorter than those in the training set, which is evidence that language model outputs may differ from the training distribution in semantically meaningful ways. In summary, this paper does not propose any new techniques for training language models, but develops an experimental framework for and provides insights into the acquisition and representation of (formal) meaning in language models.
Let $A(n, d)$ denote the maximum size of a binary code of length $n$ and minimum Hamming distance $d$. Studying $A(n, d)$, including efforts to determine it as well to derive bounds on $A(n, d)$ for large $n$'s, is one of the most fundamental subjects in coding theory. In this paper, we explore new lower and upper bounds on $A(n, d)$ in the large-minimum distance regime, in particular, when $d = n/2 - \Omega(\sqrt{n})$. We first provide a new construction of cyclic codes, by carefully selecting specific roots in the binary extension field for the check polynomial, with length $n= 2^m -1$, distance $d \geq n/2 - 2^{c-1}\sqrt{n}$, and size $n^{c+1/2}$, for any $m\geq 4$ and any integer $c$ with $0 \leq c \leq m/2 - 1$. These code parameters are slightly worse than those of the Delsarte--Goethals (DG) codes that provide the previously known best lower bound in the large-minimum distance regime. However, using a similar and extended code construction technique we show a sequence of cyclic codes that improve upon DG codes and provide the best lower bound in a narrower range of the minimum distance $d$, in particular, when $d = n/2 - \Omega(n^{2/3})$. Furthermore, by leveraging a Fourier-analytic view of Delsarte's linear program, upper bounds on $A(n, n/2 - \rho\sqrt{n})$ with $\rho\in (0.5, 9.5)$ are obtained that scale polynomially in $n$. To the best of authors' knowledge, the upper bound due to Barg and Nogin \cite{barg2006spectral} is the only previously known upper bound that scale polynomially in $n$ in this regime. We numerically demonstrate that our upper bound improves upon the Barg-Nogin upper bound in the specified high-minimum distance regime.
This paper provides the first sample complexity lower bounds for the estimation of simple diffusion models, including the Bass model (used in modeling consumer adoption) and the SIR model (used in modeling epidemics). We show that one cannot hope to learn such models until quite late in the diffusion. Specifically, we show that the time required to collect a number of observations that exceeds our sample complexity lower bounds is large. For Bass models with low innovation rates, our results imply that one cannot hope to predict the eventual number of adopting customers until one is at least two-thirds of the way to the time at which the rate of new adopters is at its peak. In a similar vein, our results imply that in the case of an SIR model, one cannot hope to predict the eventual number of infections until one is approximately two-thirds of the way to the time at which the infection rate has peaked. This lower bound in estimation further translates into a lower bound in regret for decision-making in epidemic interventions. Our results formalize the challenge of accurate forecasting and highlight the importance of incorporating additional data sources. To this end, we analyze the benefit of a seroprevalence study in an epidemic, where we characterize the size of the study needed to improve SIR model estimation. Extensive empirical analyses on product adoption and epidemic data support our theoretical findings.
Dataset Distillation is the task of synthesizing small datasets from large ones while still retaining comparable predictive accuracy to the original uncompressed dataset. Despite significant empirical progress in recent years, there is little understanding of the theoretical limitations/guarantees of dataset distillation, specifically, what excess risk is achieved by distillation compared to the original dataset, and how large are distilled datasets? In this work, we take a theoretical view on kernel ridge regression (KRR) based methods of dataset distillation such as Kernel Inducing Points. By transforming ridge regression in random Fourier features (RFF) space, we provide the first proof of the existence of small (size) distilled datasets and their corresponding excess risk for shift-invariant kernels. We prove that a small set of instances exists in the original input space such that its solution in the RFF space coincides with the solution of the original data. We further show that a KRR solution can be generated using this distilled set of instances which gives an approximation towards the KRR solution optimized on the full input data. The size of this set is linear in the dimension of the RFF space of the input set or alternatively near linear in the number of effective degrees of freedom, which is a function of the kernel, number of datapoints, and the regularization parameter $\lambda$. The error bound of this distilled set is also a function of $\lambda$. We verify our bounds analytically and empirically.
We propose a method of optimizing monotone Boolean circuits by re-writing them in a simpler, equivalent form. We use in total six heuristics: Hill Climbing, Simulated Annealing, and variations of them, which operate on the representation of the circuit as a logical formula. Our main motivation is to improve performance in Attribute-Based Encryption (ABE) schemes for Boolean circuits. Therefore, we show how our heuristics improve ABE systems for Boolean circuits. Also, we run tests to evaluate the performance of our heuristics, both as a standalone optimization for Boolean circuits and also inside ABE systems.
A new multivariate density estimator for stationary sequences is obtained by Fourier inversion of the thresholded empirical characteristic function. This estimator does not depend on the choice of parameters related to the smoothness of the density; it is directly adaptive. We establish oracle inequalities valid for independent, $\alpha$-mixing and $\tau$-mixing sequences, which allows us to derive optimal convergence rates, up to a logarithmic loss. On general anisotropic Sobolev classes, the estimator adapts to the regularity of the unknown density but also achieves directional adaptivity. In particular, if A is an invertible matrix, if the observations are drawn from X $\in$ R^d , d $\ge$ 1, it achieves the rate implied by the regularity of AX, which may be more regular than X. The estimator is easy to implement and numerically efficient. It depends on the calibration of a parameter for which we propose an innovative numerical selection procedure, using the Euler characteristic of the thresholded areas.
Pre-training datasets are critical for building state-of-the-art machine learning models, motivating rigorous study on their impact on downstream tasks. In this work, we study the impact of the trade-off between the intra-class diversity (the number of samples per class) and the inter-class diversity (the number of classes) of a supervised pre-training dataset. Empirically, we found that with the size of the pre-training dataset fixed, the best downstream performance comes with a balance on the intra-/inter-class diversity. To understand the underlying mechanism, we show theoretically that the downstream performance depends monotonically on both types of diversity. Notably, our theory reveals that the optimal class-to-sample ratio (#classes / #samples per class) is invariant to the size of the pre-training dataset, which motivates an application of predicting the optimal number of pre-training classes. We demonstrate the effectiveness of this application by an improvement of around 2 points on the downstream tasks when using ImageNet as the pre-training dataset.
We develop deterministic algorithms for the problems of consensus, gossiping and checkpointing with nodes prone to failing. Distributed systems are modeled as synchronous complete networks. Failures are represented either as crashes or authenticated Byzantine faults. The algorithmic goal is to have both linear running time and linear amount of communication for as large an upper bound $t$ on the number of faults as possible, with respect to the number of nodes~$n$. For crash failures, these bounds of optimality are $t=\mathcal{O}(\frac{n}{\log n})$ for consensus and $t=\mathcal{O}(\frac{n}{\log^2 n})$ for gossiping and checkpointing, while the running time for each algorithm is $\Theta(t+\log n)$. For the authenticated Byzantine model of failures, we show how to accomplish both linear running time and communication for $t=\mathcal{O}(\sqrt{n})$. We show how to implement the algorithms in the single-port model, in which a node may choose only one other node to send/receive a message to/from in a round, such as to preserve the range of running time and communication optimality. We prove lower bounds to show the optimality of some performance bounds.