亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models (LLMs) have a surprising failure: when trained on "A has a feature B", they do not generalize to "B is a feature of A", which is termed the Reversal Curse. Even when training with trillions of tokens this issue still appears due to Zipf's law - hence even if we train on the entire internet. This work proposes an alternative training scheme, called reverse training, whereby all words are used twice, doubling the amount of available tokens. The LLM is trained in both forward and reverse directions by reversing the training strings while preserving (i.e., not reversing) chosen substrings, such as entities. We show that data-matched reverse-trained models provide superior performance to standard models on standard tasks, and compute-matched reverse-trained models provide far superior performance on reversal tasks, helping resolve the reversal curse issue.

相關內容

Non-autoregressive (NAR) language models are known for their low latency in neural machine translation (NMT). However, a performance gap exists between NAR and autoregressive models due to the large decoding space and difficulty in capturing dependency between target words accurately. Compounding this, preparing appropriate training data for NAR models is a non-trivial task, often exacerbating exposure bias. To address these challenges, we apply reinforcement learning (RL) to Levenshtein Transformer, a representative edit-based NAR model, demonstrating that RL with self-generated data can enhance the performance of edit-based NAR models. We explore two RL approaches: stepwise reward maximization and episodic reward maximization. We discuss the respective pros and cons of these two approaches and empirically verify them. Moreover, we experimentally investigate the impact of temperature setting on performance, confirming the importance of proper temperature setting for NAR models' training.

Large Language Models (LLMs) have significantly advanced natural language processing (NLP) tasks but also pose ethical and societal risks due to their propensity to generate harmful content. To address this, various approaches have been developed to safeguard LLMs from producing unsafe content. However, existing methods have limitations, including the need for training specific control models and proactive intervention during text generation, that lead to quality degradation and increased computational overhead. To mitigate those limitations, we propose LLMSafeGuard, a lightweight framework to safeguard LLM text generation in real-time. LLMSafeGuard integrates an external validator into the beam search algorithm during decoding, rejecting candidates that violate safety constraints while allowing valid ones to proceed. We introduce a similarity based validation approach, simplifying constraint introduction and eliminating the need for control model training. Additionally, LLMSafeGuard employs a context-wise timing selection strategy, intervening LLMs only when necessary. We evaluate LLMSafeGuard on two tasks, detoxification and copyright safeguarding, and demonstrate its superior performance over SOTA baselines. For instance, LLMSafeGuard reduces the average toxic score of. LLM output by 29.7% compared to the best baseline meanwhile preserving similar linguistic quality as natural output in detoxification task. Similarly, in the copyright task, LLMSafeGuard decreases the Longest Common Subsequence (LCS) by 56.2% compared to baselines. Moreover, our context-wise timing selection strategy reduces inference time by at least 24% meanwhile maintaining comparable effectiveness as validating each time step. LLMSafeGuard also offers tunable parameters to balance its effectiveness and efficiency.

Large language models (LLMs) have achieved impressive success on many benchmarks for mathematical reasoning. However, there is growing concern that some of this performance actually reflects dataset contamination, where data closely resembling benchmark questions leaks into the training data, instead of true reasoning ability. To investigate this claim rigorously, we commission Grade School Math 1000 (GSM1k). GSM1k is designed to mirror the style and complexity of the established GSM8k benchmark, the gold standard for measuring elementary mathematical reasoning. We ensure that the two benchmarks are comparable across important metrics such as human solve rates, number of steps in solution, answer magnitude, and more. When evaluating leading open- and closed-source LLMs on GSM1k, we observe accuracy drops of up to 13%, with several families of models (e.g., Phi and Mistral) showing evidence of systematic overfitting across almost all model sizes. At the same time, many models, especially those on the frontier, (e.g., Gemini/GPT/Claude) show minimal signs of overfitting. Further analysis suggests a positive relationship (Spearman's r^2=0.32) between a model's probability of generating an example from GSM8k and its performance gap between GSM8k and GSM1k, suggesting that many models may have partially memorized GSM8k.

Large language models (LLMs) that are proved to be very powerful on different NLP tasks. However, there are still many ways to attack the model with very low costs. How to defend the model becomes an important problem. In our work, we treat adversarial attack results as a new (unseen) domain of the model, and we frame the defending problem into how to improve the robustness of the model on the new domain. We focus on the task of conversation entailment, where multi-turn natural language dialogues are the premise, and the transformer model is fine-tuned to predict whether a given hypothesis about the given dialogue is true or false. The adversary would attack the hypothesis to fool the model to make the wrong predictions. We apply synonym-swapping as the attack method. To show the robustness of the model, we implement some fine-tuning strategies and propose the embedding perturbation loss as a method to improve the robustness of the model. Finally, we show the importance of our work by discussing the adversarial attacks in NLP in the real world.

Large language models (LLMs) have shown their capabilities in understanding contextual and semantic information regarding knowledge of instance appearances. In this paper, we introduce a novel approach to utilize the strengths of LLMs in understanding contextual appearance variations and to leverage this knowledge into a vision model (here, pedestrian detection). While pedestrian detection is considered one of the crucial tasks directly related to our safety (e.g., intelligent driving systems), it is challenging because of varying appearances and poses in diverse scenes. Therefore, we propose to formulate language-derived appearance elements and incorporate them with visual cues in pedestrian detection. To this end, we establish a description corpus that includes numerous narratives describing various appearances of pedestrians and other instances. By feeding them through an LLM, we extract appearance knowledge sets that contain the representations of appearance variations. Subsequently, we perform a task-prompting process to obtain appearance elements which are guided representative appearance knowledge relevant to a downstream pedestrian detection task. The obtained knowledge elements are adaptable to various detection frameworks, so that we can provide plentiful appearance information by integrating the language-derived appearance elements with visual cues within a detector. Through comprehensive experiments with various pedestrian detectors, we verify the adaptability and effectiveness of our method showing noticeable performance gains and achieving state-of-the-art detection performance on two public pedestrian detection benchmarks (i.e., CrowdHuman and WiderPedestrian).

Large Language Models (LLMs) have significantly advanced natural language processing (NLP) tasks but also pose ethical and societal risks due to their propensity to generate harmful content. To address this, various approaches have been developed to safeguard LLMs from producing unsafe content. However, existing methods have limitations, including the need for training specific control models and proactive intervention during text generation, that lead to quality degradation and increased computational overhead. To mitigate those limitations, we propose LLMSafeGuard, a lightweight framework to safeguard LLM text generation in real-time. LLMSafeGuard integrates an external validator into the beam search algorithm during decoding, rejecting candidates that violate safety constraints while allowing valid ones to proceed. We introduce a similarity based validation approach, simplifying constraint introduction and eliminating the need for control model training. Additionally, LLMSafeGuard employs a context-wise timing selection strategy, intervening LLMs only when necessary. We evaluate LLMSafe-Guard on two tasks, detoxification and copyright safeguarding, and demonstrate its superior performance over SOTA baselines. For instance, LLMSafeGuard reduces the average toxic score of. LLM output by 29.7% compared to the best baseline meanwhile preserving similar linguistic quality as natural output in detoxification task. Similarly, in the copyright task, LLMSafeGuard decreases the Longest Common Subsequence (LCS) by 56.2% compared to baselines. Moreover, our context-wise timing selection strategy reduces inference time by at least 24% meanwhile maintaining comparable effectiveness as validating each time step. LLMSafeGuard also offers tunable parameters to balance its effectiveness and efficiency.

Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.

Knowledge plays a critical role in artificial intelligence. Recently, the extensive success of pre-trained language models (PLMs) has raised significant attention about how knowledge can be acquired, maintained, updated and used by language models. Despite the enormous amount of related studies, there still lacks a unified view of how knowledge circulates within language models throughout the learning, tuning, and application processes, which may prevent us from further understanding the connections between current progress or realizing existing limitations. In this survey, we revisit PLMs as knowledge-based systems by dividing the life circle of knowledge in PLMs into five critical periods, and investigating how knowledge circulates when it is built, maintained and used. To this end, we systematically review existing studies of each period of the knowledge life cycle, summarize the main challenges and current limitations, and discuss future directions.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.

北京阿比特科技有限公司