亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The current strive towards end-to-end trainable computer vision systems imposes major challenges for the task of visual tracking. In contrast to most other vision problems, tracking requires the learning of a robust target-specific appearance model online, during the inference stage. To be end-to-end trainable, the online learning of the target model thus needs to be embedded in the tracking architecture itself. Due to these difficulties, the popular Siamese paradigm simply predicts a target feature template. However, such a model possesses limited discriminative power due to its inability of integrating background information. We develop an end-to-end tracking architecture, capable of fully exploiting both target and background appearance information for target model prediction. Our architecture is derived from a discriminative learning loss by designing a dedicated optimization process that is capable of predicting a powerful model in only a few iterations. Furthermore, our approach is able to learn key aspects of the discriminative loss itself. The proposed tracker sets a new state-of-the-art on 6 tracking benchmarks, achieving an EAO score of 0.440 on VOT2018, while running at over 40 FPS.

相關內容

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.

Despite huge success in the image domain, modern detection models such as Faster R-CNN have not been used nearly as much for video analysis. This is arguably due to the fact that detection models are designed to operate on single frames and as a result do not have a mechanism for learning motion representations directly from video. We propose a learning procedure that allows detection models such as Faster R-CNN to learn motion features directly from the RGB video data while being optimized with respect to a pose estimation task. Given a pair of video frames---Frame A and Frame B---we force our model to predict human pose in Frame A using the features from Frame B. We do so by leveraging deformable convolutions across space and time. Our network learns to spatially sample features from Frame B in order to maximize pose detection accuracy in Frame A. This naturally encourages our network to learn motion offsets encoding the spatial correspondences between the two frames. We refer to these motion offsets as DiMoFs (Discriminative Motion Features). In our experiments we show that our training scheme helps learn effective motion cues, which can be used to estimate and localize salient human motion. Furthermore, we demonstrate that as a byproduct, our model also learns features that lead to improved pose detection in still-images, and better keypoint tracking. Finally, we show how to leverage our learned model for the tasks of spatiotemporal action localization and fine-grained action recognition.

Tracking by detection is a common approach to solving the Multiple Object Tracking problem. In this paper we show how deep metric learning can be used to improve three aspects of tracking by detection. We train a convolutional neural network to learn an embedding function in a Siamese configuration on a large person re-identification dataset offline. It is then used to improve the online performance of tracking while retaining a high frame rate. We use this learned appearance metric to robustly build estimates of pedestrian's trajectories in the MOT16 dataset. In breaking with the tracking by detection model, we use our appearance metric to propose detections using the predicted state of a tracklet as a prior in the case where the detector fails. This method achieves competitive results in evaluation, especially among online, real-time approaches. We present an ablative study showing the impact of each of the three uses of our deep appearance metric.

Model update lies at the heart of object tracking.Generally, model update is formulated as an online learning problem where a target model is learned over the online training dataset. Our key innovation is to \emph{learn the online learning algorithm itself using large number of offline videos}, i.e., \emph{learning to update}. The learned updater takes as input the online training dataset and outputs an updated target model. As a first attempt, we design the learned updater based on recurrent neural networks (RNNs) and demonstrate its application in a template-based tracker and a correlation filter-based tracker. Our learned updater consistently improves the base trackers and runs faster than realtime on GPU while requiring small memory footprint during testing. Experiments on standard benchmarks demonstrate that our learned updater outperforms commonly used update baselines including the efficient exponential moving average (EMA)-based update and the well-designed stochastic gradient descent (SGD)-based update. Equipped with our learned updater, the template-based tracker achieves state-of-the-art performance among realtime trackers on GPU.

Similarity/Distance measures play a key role in many machine learning, pattern recognition, and data mining algorithms, which leads to the emergence of metric learning field. Many metric learning algorithms learn a global distance function from data that satisfy the constraints of the problem. However, in many real-world datasets that the discrimination power of features varies in the different regions of input space, a global metric is often unable to capture the complexity of the task. To address this challenge, local metric learning methods are proposed that learn multiple metrics across the different regions of input space. Some advantages of these methods are high flexibility and the ability to learn a nonlinear mapping but typically achieves at the expense of higher time requirement and overfitting problem. To overcome these challenges, this research presents an online multiple metric learning framework. Each metric in the proposed framework is composed of a global and a local component learned simultaneously. Adding a global component to a local metric efficiently reduce the problem of overfitting. The proposed framework is also scalable with both sample size and the dimension of input data. To the best of our knowledge, this is the first local online similarity/distance learning framework based on PA (Passive/Aggressive). In addition, for scalability with the dimension of input data, DRP (Dual Random Projection) is extended for local online learning in the present work. It enables our methods to be run efficiently on high-dimensional datasets, while maintains their predictive performance. The proposed framework provides a straightforward local extension to any global online similarity/distance learning algorithm based on PA.

Template-matching methods for visual tracking have gained popularity recently due to their comparable performance and fast speed. However, they lack effective ways to adapt to changes in the target object's appearance, making their tracking accuracy still far from state-of-the-art. In this paper, we propose a dynamic memory network to adapt the template to the target's appearance variations during tracking. An LSTM is used as a memory controller, where the input is the search feature map and the outputs are the control signals for the reading and writing process of the memory block. As the location of the target is at first unknown in the search feature map, an attention mechanism is applied to concentrate the LSTM input on the potential target. To prevent aggressive model adaptivity, we apply gated residual template learning to control the amount of retrieved memory that is used to combine with the initial template. Unlike tracking-by-detection methods where the object's information is maintained by the weight parameters of neural networks, which requires expensive online fine-tuning to be adaptable, our tracker runs completely feed-forward and adapts to the target's appearance changes by updating the external memory. Moreover, the capacity of our model is not determined by the network size as with other trackers -- the capacity can be easily enlarged as the memory requirements of a task increase, which is favorable for memorizing long-term object information. Extensive experiments on OTB and VOT demonstrates that our tracker MemTrack performs favorably against state-of-the-art tracking methods while retaining real-time speed of 50 fps.

In the same vein of discriminative one-shot learning, Siamese networks allow recognizing an object from a single exemplar with the same class label. However, they do not take advantage of the underlying structure of the data and the relationship among the multitude of samples as they only rely on pairs of instances for training. In this paper, we propose a new quadruplet deep network to examine the potential connections among the training instances, aiming to achieve a more powerful representation. We design four shared networks that receive multi-tuple of instances as inputs and are connected by a novel loss function consisting of pair-loss and triplet-loss. According to the similarity metric, we select the most similar and the most dissimilar instances as the positive and negative inputs of triplet loss from each multi-tuple. We show that this scheme improves the training performance. Furthermore, we introduce a new weight layer to automatically select suitable combination weights, which will avoid the conflict between triplet and pair loss leading to worse performance. We evaluate our quadruplet framework by model-free tracking-by-detection of objects from a single initial exemplar in several Visual Object Tracking benchmarks. Our extensive experimental analysis demonstrates that our tracker achieves superior performance with a real-time processing speed of 78 frames-per-second (fps).

One property that remains lacking in image captions generated by contemporary methods is discriminability: being able to tell two images apart given the caption for one of them. We propose a way to improve this aspect of caption generation. By incorporating into the captioning training objective a loss component directly related to ability (by a machine) to disambiguate image/caption matches, we obtain systems that produce much more discriminative caption, according to human evaluation. Remarkably, our approach leads to improvement in other aspects of generated captions, reflected by a battery of standard scores such as BLEU, SPICE etc. Our approach is modular and can be applied to a variety of model/loss combinations commonly proposed for image captioning.

During the recent years, correlation filters have shown dominant and spectacular results for visual object tracking. The types of the features that are employed in these family of trackers significantly affect the performance of visual tracking. The ultimate goal is to utilize robust features invariant to any kind of appearance change of the object, while predicting the object location as properly as in the case of no appearance change. As the deep learning based methods have emerged, the study of learning features for specific tasks has accelerated. For instance, discriminative visual tracking methods based on deep architectures have been studied with promising performance. Nevertheless, correlation filter based (CFB) trackers confine themselves to use the pre-trained networks which are trained for object classification problem. To this end, in this manuscript the problem of learning deep fully convolutional features for the CFB visual tracking is formulated. In order to learn the proposed model, a novel and efficient backpropagation algorithm is presented based on the loss function of the network. The proposed learning framework enables the network model to be flexible for a custom design. Moreover, it alleviates the dependency on the network trained for classification. Extensive performance analysis shows the efficacy of the proposed custom design in the CFB tracking framework. By fine-tuning the convolutional parts of a state-of-the-art network and integrating this model to a CFB tracker, which is the top performing one of VOT2016, 18% increase is achieved in terms of expected average overlap, and tracking failures are decreased by 25%, while maintaining the superiority over the state-of-the-art methods in OTB-2013 and OTB-2015 tracking datasets.

In this paper we propose an effective non-rigid object tracking method based on spatial-temporal consistent saliency detection. In contrast to most existing trackers that use a bounding box to specify the tracked target, the proposed method can extract the accurate regions of the target as tracking output, which achieves better description of the non-rigid objects while reduces background pollution to the target model. Furthermore, our model has several unique features. First, a tailored deep fully convolutional neural network (TFCN) is developed to model the local saliency prior for a given image region, which not only provides the pixel-wise outputs but also integrates the semantic information. Second, a multi-scale multi-region mechanism is proposed to generate local region saliency maps that effectively consider visual perceptions with different spatial layouts and scale variations. Subsequently, these saliency maps are fused via a weighted entropy method, resulting in a final discriminative saliency map. Finally, we present a non-rigid object tracking algorithm based on the proposed saliency detection method by utilizing a spatial-temporal consistent saliency map (STCSM) model to conduct target-background classification and using a simple fine-tuning scheme for online updating. Numerous experimental results demonstrate that the proposed algorithm achieves competitive performance in comparison with state-of-the-art methods for both saliency detection and visual tracking, especially outperforming other related trackers on the non-rigid object tracking datasets.

北京阿比特科技有限公司