Music motif, as a conceptual building block of composition, is crucial for music structure analysis and automatic composition. While human listeners can identify motifs easily, existing computational models fall short in representing motifs and their developments. The reason is that the nature of motifs is implicit, and the diversity of motif variations extends beyond simple repetitions and modulations. In this study, we aim to learn the implicit relationship between motifs and their variations via representation learning, using the Siamese network architecture and a pretraining and fine-tuning pipeline. A regularization-based method, VICReg, is adopted for pretraining, while contrastive learning is used for fine-tuning. Experimental results on a retrieval-based task show that these two methods complement each other, yielding an improvement of 12.6% in the area under the precision-recall curve. Lastly, we visualize the acquired motif representations, offering an intuitive comprehension of the overall structure of a music piece. As far as we know, this work marks a noteworthy step forward in computational modeling of music motifs. We believe that this work lays the foundations for future applications of motifs in automatic music composition and music information retrieval.
Formal methods refer to rigorous, mathematical approaches to system development and have played a key role in establishing the correctness of safety-critical systems. The main building blocks of formal methods are models and specifications, which are analogous to behaviors and requirements in system design and give us the means to verify and synthesize system behaviors with formal guarantees. This monograph provides a survey of the current state of the art on applications of formal methods in the autonomous systems domain. We consider correct-by-construction synthesis under various formulations, including closed systems, reactive, and probabilistic settings. Beyond synthesizing systems in known environments, we address the concept of uncertainty and bound the behavior of systems that employ learning using formal methods. Further, we examine the synthesis of systems with monitoring, a mitigation technique for ensuring that once a system deviates from expected behavior, it knows a way of returning to normalcy. We also show how to overcome some limitations of formal methods themselves with learning. We conclude with future directions for formal methods in reinforcement learning, uncertainty, privacy, explainability of formal methods, and regulation and certification.
Submodular maximization under various constraints is a fundamental problem studied continuously, in both computer science and operations research, since the late $1970$'s. A central technique in this field is to approximately optimize the multilinear extension of the submodular objective, and then round the solution. The use of this technique requires a solver able to approximately maximize multilinear extensions. Following a long line of work, Buchbinder and Feldman (2019) described such a solver guaranteeing $0.385$-approximation for down-closed constraints, while Oveis Gharan and Vondr\'ak (2011) showed that no solver can guarantee better than $0.478$-approximation. In this paper, we present a solver guaranteeing $0.401$-approximation, which significantly reduces the gap between the best known solver and the inapproximability result. The design and analysis of our solver are based on a novel bound that we prove for DR-submodular functions. This bound improves over a previous bound due to Feldman et al. (2011) that is used by essentially all state-of-the-art results for constrained maximization of general submodular/DR-submodular functions. Hence, we believe that our new bound is likely to find many additional applications in related problems, and to be a key component for further improvement.
Diffusion models have recently dominated image synthesis tasks. However, the iterative denoising process is expensive in computations at inference time, making diffusion models less practical for low-latency and scalable real-world applications. Post-training quantization (PTQ) of diffusion models can significantly reduce the model size and accelerate the sampling process without re-training. Nonetheless, applying existing PTQ methods directly to low-bit diffusion models can significantly impair the quality of generated samples. Specifically, for each denoising step, quantization noise leads to deviations in the estimated mean and mismatches with the predetermined variance schedule. As the sampling process proceeds, the quantization noise may accumulate, resulting in a low signal-to-noise ratio (SNR) during the later denoising steps. To address these challenges, we propose a unified formulation for the quantization noise and diffusion perturbed noise in the quantized denoising process. Specifically, we first disentangle the quantization noise into its correlated and residual uncorrelated parts regarding its full-precision counterpart. The correlated part can be easily corrected by estimating the correlation coefficient. For the uncorrelated part, we subtract the bias from the quantized results to correct the mean deviation and calibrate the denoising variance schedule to absorb the excess variance resulting from quantization. Moreover, we introduce a mixed-precision scheme for selecting the optimal bitwidth for each denoising step. Extensive experiments demonstrate that our method outperforms previous post-training quantized diffusion models, with only a 0.06 increase in FID score compared to full-precision LDM-4 on ImageNet 256x256, while saving 19.9x bit operations. Code is available at //github.com/ziplab/PTQD.
Pipelines, vital for fluid transport, pose an important yet challenging inspection task, particularly in small, flexible biological systems, that robots have yet to master. In this study, we explored the development of an innovative robot inspired by the ovipositor of parasitic wasps to navigate and inspect pipelines. The robot features a flexible locomotion system that adapts to different tube sizes and shapes through a mechanical inflation technique. The flexible locomotion system employs a reciprocating motion, in which groups of three sliders extend and retract in a cyclic fashion. In a proof-of-principle experiment, the robot locomotion efficiency demonstrated positive linear correlation (r=0.6434) with the diameter ratio (ratio of robot diameter to tube diameter). The robot showcased a remarkable ability to traverse tubes of different sizes, shapes and payloads with an average of (70%) locomotion efficiency across all testing conditions, at varying diameter ratios (0.7-1.5). Furthermore, the mechanical inflation mechanism displayed substantial load-carrying capacity, producing considerable holding force of (13 N), equivalent to carrying a payload of approximately (5.8 Kg) inclusive the robot weight. This novel soft robotic system shows promise for inspection and navigation within tubular confined spaces, particularly in scenarios requiring adaptability to different tube shapes, sizes, and load-carrying capacities. This novel design serves as a foundation for a new class of pipeline inspection robots that exhibit versatility across various pipeline environments, potentially including biological systems.
Feature bagging is a well-established ensembling method which aims to reduce prediction variance by combining predictions of many estimators trained on subsets or projections of features. Here, we develop a theory of feature-bagging in noisy least-squares ridge ensembles and simplify the resulting learning curves in the special case of equicorrelated data. Using analytical learning curves, we demonstrate that subsampling shifts the double-descent peak of a linear predictor. This leads us to introduce heterogeneous feature ensembling, with estimators built on varying numbers of feature dimensions, as a computationally efficient method to mitigate double-descent. Then, we compare the performance of a feature-subsampling ensemble to a single linear predictor, describing a trade-off between noise amplification due to subsampling and noise reduction due to ensembling. Our qualitative insights carry over to linear classifiers applied to image classification tasks with realistic datasets constructed using a state-of-the-art deep learning feature map.
It is common to manufacture an object by decomposing it into parts that can be assembled. This decomposition is often required by size limits of the machine, the complex structure of the shape, etc. To make it possible to easily assemble the final object, it is often desirable to design geometry that enables robust connections between the subcomponents. In this project, we study the task of dovetail-joint shape optimization for stiffness using gradient-based optimization. This optimization requires a differentiable simulator that is capable of modeling the contact between the two parts of a joint, making it possible to reason about the gradient of the stiffness with respect to shape parameters. Our simulation approach uses a penalty method that alternates between optimizing each side of the joint, using the adjoint method to compute gradients. We test our method by optimizing the joint shapes in three different joint shape spaces, and evaluate optimized joint shapes in both simulation and real-world tests. The experiments show that optimized joint shapes achieve higher stiffness, both synthetically and in real-world tests.
Target speech extraction aims to extract, based on a given conditioning cue, a target speech signal that is corrupted by interfering sources, such as noise or competing speakers. Building upon the achievements of the state-of-the-art (SOTA) time-frequency speaker separation model TF-GridNet, we propose AV-GridNet, a visual-grounded variant that incorporates the face recording of a target speaker as a conditioning factor during the extraction process. Recognizing the inherent dissimilarities between speech and noise signals as interfering sources, we also propose SAV-GridNet, a scenario-aware model that identifies the type of interfering scenario first and then applies a dedicated expert model trained specifically for that scenario. Our proposed model achieves SOTA results on the second COG-MHEAR Audio-Visual Speech Enhancement Challenge, outperforming other models by a significant margin, objectively and in a listening test. We also perform an extensive analysis of the results under the two scenarios.
Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.