亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Agent-based model (ABM) has been widely used to study infectious disease transmission by simulating behaviors and interactions of autonomous individuals called agents. In the ABM, agent states, for example infected or susceptible, are assigned according to a set of simple rules, and a complex dynamics of disease transmission is described by the collective states of agents over time. Despite the flexibility in real-world modeling, ABMs have received less attention by statisticians because of the intractable likelihood functions which lead to difficulty in estimating parameters and quantifying uncertainty around model outputs. To overcome this limitation, we propose to treat the entire system as a Hidden Markov Model and develop the ABM for infectious disease transmission within the Bayesian framework. The hidden states in the model are represented by individual agent's states over time. We estimate the hidden states and the parameters associated with the model by applying particle Markov Chain Monte Carlo algorithm. Performance of the approach for parameter recovery and prediction along with sensitivity to prior assumptions are evaluated under various simulation conditions. Finally, we apply the proposed approach to the study of COVID-19 outbreak on Diamond Princess cruise ship and examine the differences in transmission by key demographic characteristics, while considering different network structures and the limitations of COVID-19 testing in the cruise.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 泛函 · 近似 · 噪聲 · 平方指數 ·
2023 年 2 月 10 日

In this paper, we study error bounds for {\em Bayesian quadrature} (BQ), with an emphasis on noisy settings, randomized algorithms, and average-case performance measures. We seek to approximate the integral of functions in a {\em Reproducing Kernel Hilbert Space} (RKHS), particularly focusing on the Mat\'ern-$\nu$ and squared exponential (SE) kernels, with samples from the function potentially being corrupted by Gaussian noise. We provide a two-step meta-algorithm that serves as a general tool for relating the average-case quadrature error with the $L^2$-function approximation error. When specialized to the Mat\'ern kernel, we recover an existing near-optimal error rate while avoiding the existing method of repeatedly sampling points. When specialized to other settings, we obtain new average-case results for settings including the SE kernel with noise and the Mat\'ern kernel with misspecification. Finally, we present algorithm-independent lower bounds that have greater generality and/or give distinct proofs compared to existing ones.

We model a vehicle equipped with an autonomous cyber-defense system in addition to its inherent physical resilience features. When attacked, this ensemble of cyber-physical features (i.e., ``bonware'') strives to resist and recover from the performance degradation caused by the malware's attack. We model the underlying differential equations governing such attacks for piecewise linear characterizations of malware and bonware, develop a discrete time stochastic model, and show that averages of instantiations of the stochastic model approximate solutions to the continuous differential equation. We develop a theory and methodology for approximating the parameters associated with these equations.

In the usual Bayesian setting, a full probabilistic model is required to link the data and parameters, and the form of this model and the inference and prediction mechanisms are specified via de Finetti's representation. In general, such a formulation is not robust to model mis-specification of its component parts. An alternative approach is to draw inference based on loss functions, where the quantity of interest is defined as a minimizer of some expected loss, and to construct posterior distributions based on the loss-based formulation; this strategy underpins the construction of the Gibbs posterior. We develop a Bayesian non-parametric approach; specifically, we generalize the Bayesian bootstrap, and specify a Dirichlet process model for the distribution of the observables. We implement this using direct prior-to-posterior calculations, but also using predictive sampling. We also study the assessment of posterior validity for non-standard Bayesian calculations, and provide an efficient way to calibrate the scaling parameter in the Gibbs posterior so that it can achieve the desired coverage rate. We show that the developed non-standard Bayesian updating procedures yield valid posterior distributions in terms of consistency and asymptotic normality under model mis-specification. Simulation studies show that the proposed methods can recover the true value of the parameter efficiently and achieve frequentist coverage even when the sample size is small. Finally, we apply our methods to evaluate the causal impact of speed cameras on traffic collisions in England.

Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.

Existing research on training-time attacks for deep neural networks (DNNs), such as backdoors, largely assume that models are static once trained, and hidden backdoors trained into models remain active indefinitely. In practice, models are rarely static but evolve continuously to address distribution drifts in the underlying data. This paper explores the behavior of backdoor attacks in time-varying models, whose model weights are continually updated via fine-tuning to adapt to data drifts. Our theoretical analysis shows how fine-tuning with fresh data progressively "erases" the injected backdoors, and our empirical study illustrates how quickly a time-varying model "forgets" backdoors under a variety of training and attack settings. We also show that novel fine-tuning strategies using smart learning rates can significantly accelerate backdoor forgetting. Finally, we discuss the need for new backdoor defenses that target time-varying models specifically.

State of the art reinforcement learning has enabled training agents on tasks of ever increasing complexity. However, the current paradigm tends to favor training agents from scratch on every new task or on collections of tasks with a view towards generalizing to novel task configurations. The former suffers from poor data efficiency while the latter is difficult when test tasks are out-of-distribution. Agents that can effectively transfer their knowledge about the world pose a potential solution to these issues. In this paper, we investigate transfer learning in the context of model-based agents. Specifically, we aim to understand when exactly environment models have an advantage and why. We find that a model-based approach outperforms controlled model-free baselines for transfer learning. Through ablations, we show that both the policy and dynamics model learnt through exploration matter for successful transfer. We demonstrate our results across three domains which vary in their requirements for transfer: in-distribution procedural (Crafter), in-distribution identical (RoboDesk), and out-of-distribution (Meta-World). Our results show that intrinsic exploration combined with environment models present a viable direction towards agents that are self-supervised and able to generalize to novel reward functions.

Predicting the behaviors of other road users is crucial to safe and intelligent decision-making for autonomous vehicles (AVs). However, most motion prediction models ignore the influence of the AV's actions and the planning module has to treat other agents as unalterable moving obstacles. To address this problem, this paper proposes an interaction-aware motion prediction model that is able to predict other agents' future trajectories according to the ego agent's future plan, i.e., their reactions to the ego's actions. Specifically, we employ Transformers to effectively encode the driving scene and incorporate the AV's plan in decoding the predicted trajectories. To train the model to accurately predict the reactions of other agents, we develop an online learning framework, where the ego agent explores the environment and collects other agents' reactions to itself. We validate the decision-making and learning framework in three highly interactive simulated driving scenarios. The results reveal that our decision-making method significantly outperforms the reinforcement learning methods in terms of data efficiency and performance. We also find that using the interaction-aware model can bring better performance than the non-interaction-aware model and the exploration process helps improve the success rate in testing.

This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.

北京阿比特科技有限公司