亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Surface reconstruction is very challenging when the input point clouds, particularly real scans, are noisy and lack normals. Observing that the Multilayer Perceptron (MLP) and the implicit moving least-square function (IMLS) provide a dual representation of the underlying surface, we introduce Neural-IMLS, a novel approach that directly learns the noise-resistant signed distance function (SDF) from unoriented raw point clouds in a self-supervised fashion. We use the IMLS to regularize the distance values reported by the MLP while using the MLP to regularize the normals of the data points for running the IMLS. We also prove that at the convergence, our neural network, benefiting from the mutual learning mechanism between the MLP and the IMLS, produces a faithful SDF whose zero-level set approximates the underlying surface. We conducted extensive experiments on various benchmarks, including synthetic scans and real scans. The experimental results show that {\em Neural-IMLS} can reconstruct faithful shapes on various benchmarks with noise and missing parts. The source code can be found at~\url{//github.com/bearprin/Neural-IMLS}.

相關內容

 Surface 是微軟公司( )旗下一系列使用 Windows 10(早期為 Windows 8.X)操作系統的電腦產品,目前有 Surface、Surface Pro 和 Surface Book 三個系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由時任微軟 CEO 史蒂夫·鮑爾默發布于在洛杉磯舉行的記者會,2012 年 10 月 26 日上市銷售。

Predicting turn-taking in multiparty conversations has many practical applications in human-computer/robot interaction. However, the complexity of human communication makes it a challenging task. Recent advances have shown that synchronous multi-perspective egocentric data can significantly improve turn-taking prediction compared to asynchronous, single-perspective transcriptions. Building on this research, we propose a new multimodal transformer-based architecture for predicting turn-taking in embodied, synchronized multi-perspective data. Our experimental results on the recently introduced EgoCom dataset show a substantial performance improvement of up to 14.01% on average compared to existing baselines and alternative transformer-based approaches. The source code, and the pre-trained models of our 3T-Transformer will be available upon acceptance.

The task of response selection in multi-turn dialogue is to find the best option from all candidates. In order to improve the reasoning ability of the model, previous studies pay more attention to using explicit algorithms to model the dependencies between utterances, which are deterministic, limited and inflexible. In addition, few studies consider differences between the options before and after reasoning. In this paper, we propose an Implicit Relational Reasoning Graph Network to address these issues, which consists of the Utterance Relational Reasoner (URR) and the Option Dual Comparator (ODC). URR aims to implicitly extract dependencies between utterances, as well as utterances and options, and make reasoning with relational graph convolutional networks. ODC focuses on perceiving the difference between the options through dual comparison, which can eliminate the interference of the noise options. Experimental results on two multi-turn dialogue reasoning benchmark datasets MuTual and MuTual+ show that our method significantly improves the baseline of four pretrained language models and achieves state-of-the-art performance. The model surpasses human performance for the first time on the MuTual dataset.

Radar has stronger adaptability in adverse scenarios for autonomous driving environmental perception compared to widely adopted cameras and LiDARs. Compared with commonly used 3D radars, the latest 4D radars have precise vertical resolution and higher point cloud density, making it a highly promising sensor for autonomous driving in complex environmental perception. However, due to the much higher noise than LiDAR, manufacturers choose different filtering strategies, resulting in an inverse ratio between noise level and point cloud density. There is still a lack of comparative analysis on which method is beneficial for deep learning-based perception algorithms in autonomous driving. One of the main reasons is that current datasets only adopt one type of 4D radar, making it difficult to compare different 4D radars in the same scene. Therefore, in this paper, we introduce a novel large-scale multi-modal dataset featuring, for the first time, two types of 4D radars captured simultaneously. This dataset enables further research into effective 4D radar perception algorithms.Our dataset consists of 151 consecutive series, most of which last 20 seconds and contain 10,007 meticulously synchronized and annotated frames. Moreover, our dataset captures a variety of challenging driving scenarios, including many road conditions, weather conditions, nighttime and daytime with different lighting intensities and periods. Our dataset annotates consecutive frames, which can be applied to 3D object detection and tracking, and also supports the study of multi-modal tasks. We experimentally validate our dataset, providing valuable results for studying different types of 4D radars. This dataset is released on //github.com/adept-thu/Dual-Radar.

Evolutionary algorithms (EAs) have emerged as a powerful framework for optimization, especially for black-box optimization. This paper first focuses on automated EA: Automated EA exploits structure in the problem of interest to automatically generate update rules (optimization strategies) for generating and selecting potential solutions so that it can move a random population near the optimal solution. However, current EAs cannot achieve this goal due to the poor representation of the optimization strategy and the weak interaction between the optimization strategy and the target task. We design a deep evolutionary convolution network (DECN) to realize the move from hand-designed EAs to automated EAs without manual interventions. DECN has high adaptability to the target task and can obtain better solutions with less computational cost. DECN is also able to effectively utilize the low-fidelity information of the target task to form an efficient optimization strategy. The experiments on nine synthetics and two real-world cases show the advantages of learned optimization strategies over the state-of-the-art human-designed and meta-learning EA baselines. In addition, due to the tensorization of the operations, DECN is friendly to the acceleration provided by GPUs and runs 102 times faster than EA.

Split inference partitions a deep neural network (DNN) to run the early part at the edge and the later part in the cloud. This meets two key requirements for on-device machine learning: input privacy and compute efficiency. Still, an open question in split inference is output privacy, given that the output of a DNN is visible to the cloud. While encrypted computing can protect output privacy, it mandates extensive computation and communication resources. In this paper, we introduce "Salted DNNs": a novel method that lets clients control the semantic interpretation of DNN output at inference time while maintaining accuracy and efficiency very close to that of a standard DNN. Experimental evaluations conducted on both image and sensor data show that Salted DNNs achieve classification accuracy very close to standard DNNs, particularly when the salted layer is positioned within the early part to meet the requirements of split inference. Our method is general and can be applied to various DNNs. We open-source our code and results, as a benchmark for future studies.

Simultaneous localization and mapping, as a fundamental task in computer vision, has gained higher demands for performance in recent years due to the rapid development of autonomous driving and unmanned aerial vehicles. Traditional SLAM algorithms highly rely on basic geometry features such as points and lines, which are susceptible to environment. Conversely, higher-level object features offer richer information that is crucial for enhancing the overall performance of the framework. However, the effective utilization of object features necessitates careful consideration of various challenges, including complexity and process velocity. Given the advantages and disadvantages of both high-level object feature and low-level geometry features, it becomes essential to make informed choices within the SLAM framework. Taking these factors into account, this paper provides a thorough comparison between geometry features and object features, analyzes the current mainstream application methods of object features in SLAM frameworks, and presents a comprehensive overview of the main challenges involved in object-based SLAM.

Identifying relevant persona or knowledge for conversational systems is critical to grounded dialogue response generation. However, each grounding has been mostly researched in isolation with more practical multi-context dialogue tasks introduced in recent works. We define Persona and Knowledge Dual Context Identification as the task to identify persona and knowledge jointly for a given dialogue, which could be of elevated importance in complex multi-context dialogue settings. We develop a novel grounding retrieval method that utilizes all contexts of dialogue simultaneously. Our method requires less computational power via utilizing neural QA retrieval models. We further introduce our novel null-positive rank test which measures ranking performance on semantically dissimilar samples (i.e. hard negatives) in relation to data augmentation.

Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

Salient object detection is a fundamental problem and has been received a great deal of attentions in computer vision. Recently deep learning model became a powerful tool for image feature extraction. In this paper, we propose a multi-scale deep neural network (MSDNN) for salient object detection. The proposed model first extracts global high-level features and context information over the whole source image with recurrent convolutional neural network (RCNN). Then several stacked deconvolutional layers are adopted to get the multi-scale feature representation and obtain a series of saliency maps. Finally, we investigate a fusion convolution module (FCM) to build a final pixel level saliency map. The proposed model is extensively evaluated on four salient object detection benchmark datasets. Results show that our deep model significantly outperforms other 12 state-of-the-art approaches.

北京阿比特科技有限公司