亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Code review is a popular practice where developers critique each others' changes. Since automated builds can identify low-level issues (e.g., syntactic errors, regression bugs), it is not uncommon for software organizations to incorporate automated builds in the code review process. In such code review deployment scenarios, submitted change sets must be approved for integration by both peer code reviewers and automated build bots. Since automated builds may produce an unreliable signal of the status of a change set (e.g., due to ``flaky'' or non-deterministic execution behaviour), code review tools, such as Gerrit, allow developers to request a ``recheck'', which repeats the build process without updating the change set. We conjecture that an unconstrained recheck command will waste time and resources if it is not applied judiciously. To explore how the recheck command is applied in a practical setting, in this paper, we conduct an empirical study of 66,932 code reviews from the OpenStack community. We quantitatively analyze (i) how often build failures are rechecked; (ii) the extent to which invoking recheck changes build failure outcomes; and (iii) how much waste is generated by invoking recheck. We observe that (i) 55% of code reviews invoke the recheck command after a failing build is reported; (ii) invoking the recheck command only changes the outcome of a failing build in 42% of the cases; and (iii) invoking the recheck command increases review waiting time by an average of 2,200% and equates to 187.4 compute years of waste -- enough compute resources to compete with the oldest land living animal on earth.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Version control system tools empower developers to independently work on their development tasks. These tools also facilitate the integration of changes through merging operations, and report textual conflicts. However, when developers integrate their changes, they might encounter other types of conflicts that are not detected by current merge tools. In this paper, we focus on dynamic semantic conflicts, which occur when merging reports no textual conflicts but results in undesired interference - causing unexpected program behavior at runtime. To address this issue, we propose a technique that explores the use of static analysis to detect interference when merging contributions from two developers. We evaluate our technique using a dataset of 99 experimental units extracted from merge scenarios. The results provide evidence that our technique presents significant interference detection capability. It outperforms, in terms of F1 score and recall, previous methods that rely on dynamic analysis for detecting semantic conflicts, but these show better precision. Our technique precision is comparable to the ones observed in other studies that also leverage static analysis or use theorem proving techniques to detect semantic conflicts, albeit with significantly improved overall performance.

While personalized recommendations systems have become increasingly popular, ensuring user data protection remains a paramount concern in the development of these learning systems. A common approach to enhancing privacy involves training models using anonymous data rather than individual data. In this paper, we explore a natural technique called \emph{look-alike clustering}, which involves replacing sensitive features of individuals with the cluster's average values. We provide a precise analysis of how training models using anonymous cluster centers affects their generalization capabilities. We focus on an asymptotic regime where the size of the training set grows in proportion to the features dimension. Our analysis is based on the Convex Gaussian Minimax Theorem (CGMT) and allows us to theoretically understand the role of different model components on the generalization error. In addition, we demonstrate that in certain high-dimensional regimes, training over anonymous cluster centers acts as a regularization and improves generalization error of the trained models. Finally, we corroborate our asymptotic theory with finite-sample numerical experiments where we observe a perfect match when the sample size is only of order of a few hundreds.

In today's modern world, software plays a pivotal role. Software development is a highly complex and time-consuming process, demanding multidimensional efforts. Companies continually adapt their requirements to align with the evolving environment, with a specific emphasis on rapid delivery and the acceptance of changing requirements. Traditional models, such as plan-driven development, often fall short in meeting these demands. In the realm of software development, Agile has been the focal point of global discourse for both researchers and developers. Agile development is better suited to customize and streamline the development process, offering a highly flexible, early, and rapid delivery lifecycle conducive to efficient software development. This article aims to provide an overview of two prominent Agile methodologies: Scrum and Extreme Programming (XP). It achieves this by reviewing relevant publications, analyzing their impact on software development, exploring the distinctive features of each methodology, and conducting a comparative assessment. Furthermore, the article offers personal insights and recommendations. Notably, the integration of XP practices into Scrum has given rise to a novel hybrid methodology known as "Xcrum," which retains its agility. It should be highlighted that, given this new approach's incorporation of the strengths of both methods, it holds the potential to outperform the original frameworks.

Frequent modifications of unit test cases are inevitable due to software's continuous underlying changes in source code, design, and requirements. Since manually maintaining software test suites is tedious, timely, and costly, automating the process of generation and maintenance of test units will significantly impact the effectiveness and efficiency of software testing processes. To this end, we propose an automated approach which exploits both structural and semantic properties of source code methods and test cases to recommend the most relevant and useful unit tests to the developers. The proposed approach initially trains a neural network to transform method-level source code, as well as unit tests, into distributed representations (embedded vectors) while preserving the importance of the structure in the code. Retrieving the semantic and structural properties of a given method, the approach computes cosine similarity between the method's embedding and the previously-embedded training instances. Further, according to the similarity scores between the embedding vectors, the model identifies the closest methods of embedding and the associated unit tests as the most similar recommendations. The results on the Methods2Test dataset showed that, while there is no guarantee to have similar relevant test cases for the group of similar methods, the proposed approach extracts the most similar existing test cases for a given method in the dataset, and evaluations show that recommended test cases decrease the developers' effort to generating expected test cases.

While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

Diffusion models are a class of deep generative models that have shown impressive results on various tasks with dense theoretical founding. Although diffusion models have achieved impressive quality and diversity of sample synthesis than other state-of-the-art models, they still suffer from costly sampling procedure and sub-optimal likelihood estimation. Recent studies have shown great enthusiasm on improving the performance of diffusion model. In this article, we present a first comprehensive review of existing variants of the diffusion models. Specifically, we provide a first taxonomy of diffusion models and categorize them variants to three types, namely sampling-acceleration enhancement, likelihood-maximization enhancement and data-generalization enhancement. We also introduce in detail other five generative models (i.e., variational autoencoders, generative adversarial networks, normalizing flow, autoregressive models, and energy-based models), and clarify the connections between diffusion models and these generative models. Then we make a thorough investigation into the applications of diffusion models, including computer vision, natural language processing, waveform signal processing, multi-modal modeling, molecular graph generation, time series modeling, and adversarial purification. Furthermore, we propose new perspectives pertaining to the development of this generative model.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.

北京阿比特科技有限公司