亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The superiority of Multi-Robot Systems (MRS) in various complex environments is unquestionable. However, in complex situations such as search and rescue, environmental monitoring, and automated production, robots are often required to work collaboratively without a central control unit. This necessitates an efficient and robust decentralized control mechanism to process local information and guide the robots' behavior. In this work, we propose a new decentralized controller design method that utilizes the Deep Q-Network (DQN) algorithm from deep reinforcement learning, aimed at improving the integration of local information and robustness of multi-robot systems. The designed controller allows each robot to make decisions independently based on its local observations while enhancing the overall system's collaborative efficiency and adaptability to dynamic environments through a shared learning mechanism. Through testing in simulated environments, we have demonstrated the effectiveness of this controller in improving task execution efficiency, strengthening system fault tolerance, and enhancing adaptability to the environment. Furthermore, we explored the impact of DQN parameter tuning on system performance, providing insights for further optimization of the controller design. Our research not only showcases the potential application of the DQN algorithm in the decentralized control of multi-robot systems but also offers a new perspective on how to enhance the overall performance and robustness of the system through the integration of local information.

相關內容

Navigating complex environments requires Unmanned Aerial Vehicles (UAVs) and autonomous systems to perform trajectory tracking and obstacle avoidance in real-time. While many control strategies have effectively utilized linear approximations, addressing the non-linear dynamics of UAV, especially in obstacle-dense environments, remains a key challenge that requires further research. This paper introduces a Non-linear Model Predictive Control (NMPC) framework for the DJI Matrice 100, addressing these challenges by using a dynamic model and B-spline interpolation for smooth reference trajectories, ensuring minimal deviation while respecting safety constraints. The framework supports various trajectory types and employs a penalty-based cost function for control accuracy in tight maneuvers. The framework utilizes CasADi for efficient real-time optimization, enabling the UAV to maintain robust operation even under tight computational constraints. Simulation and real-world indoor and outdoor experiments demonstrated the NMPC ability to adapt to disturbances, resulting in smooth, collision-free navigation.

We introduce the term Super-Reactive Systems to refer to reactive systems whose construction and behavior are complex, constantly changing and evolving, and heavily interwoven with other systems and the physical world. Finding hidden faults in such systems early in planning and development is critical for human safety, the environment, society and the economy. However, the complexity of the system and its interactions and the absence of adequate technical details pose a great obstacle. We propose an architecture for models and tools to overcome such barriers and enable simulation, systematic analysis, and fault detection and handling, early in the development of super-reactive systems. The approach is facilitated by the inference and abstraction capabilities and the power and knowledge afforded by large language models and associated AI tools. It is based on: (i) deferred, just-in-time interpretation of model elements that are stored in natural language form, and (ii) early capture of tacit interdependencies among seemingly orthogonal requirements.

Existing 3D facial emotion modeling have been constrained by limited emotion classes and insufficient datasets. This paper introduces "Emo3D", an extensive "Text-Image-Expression dataset" spanning a wide spectrum of human emotions, each paired with images and 3D blendshapes. Leveraging Large Language Models (LLMs), we generate a diverse array of textual descriptions, facilitating the capture of a broad spectrum of emotional expressions. Using this unique dataset, we conduct a comprehensive evaluation of language-based models' fine-tuning and vision-language models like Contranstive Language Image Pretraining (CLIP) for 3D facial expression synthesis. We also introduce a new evaluation metric for this task to more directly measure the conveyed emotion. Our new evaluation metric, Emo3D, demonstrates its superiority over Mean Squared Error (MSE) metrics in assessing visual-text alignment and semantic richness in 3D facial expressions associated with human emotions. "Emo3D" has great applications in animation design, virtual reality, and emotional human-computer interaction.

Recent advances in Large Language Models (LLMs) have enabled the generation of open-ended high-quality texts, that are non-trivial to distinguish from human-written texts. We refer to such LLM-generated texts as deepfake texts. There are currently over 72K text generation models in the huggingface model repo. As such, users with malicious intent can easily use these open-sourced LLMs to generate harmful texts and dis/misinformation at scale. To mitigate this problem, a computational method to determine if a given text is a deepfake text or not is desired--i.e., Turing Test (TT). In particular, in this work, we investigate the more general version of the problem, known as Authorship Attribution (AA), in a multi-class setting--i.e., not only determining if a given text is a deepfake text or not but also being able to pinpoint which LLM is the author. We propose TopFormer to improve existing AA solutions by capturing more linguistic patterns in deepfake texts by including a Topological Data Analysis (TDA) layer in the Transformer-based model. We show the benefits of having a TDA layer when dealing with imbalanced, and multi-style datasets, by extracting TDA features from the reshaped $pooled\_output$ of our backbone as input. This Transformer-based model captures contextual representations (i.e., semantic and syntactic linguistic features), while TDA captures the shape and structure of data (i.e., linguistic structures). Finally, TopFormer, outperforms all baselines in all 3 datasets, achieving up to 7\% increase in Macro F1 score. Our code and datasets are available at: //github.com/AdaUchendu/topformer

Despite the recent advancements in Large Language Models (LLMs), which have significantly enhanced the generative capabilities for various NLP tasks, LLMs still face limitations in directly handling retrieval tasks. However, many practical applications demand the seamless integration of both retrieval and generation. This paper introduces a novel and efficient One-pass Generation and retrieval framework (OneGen), designed to improve LLMs' performance on tasks that require both generation and retrieval. The proposed framework bridges the traditionally separate training approaches for generation and retrieval by incorporating retrieval tokens generated autoregressively. This enables a single LLM to handle both tasks simultaneously in a unified forward pass. We conduct experiments on two distinct types of composite tasks, RAG and Entity Linking, to validate the pluggability, effectiveness, and efficiency of OneGen in training and inference. Furthermore, our results show that integrating generation and retrieval within the same context preserves the generative capabilities of LLMs while improving retrieval performance. To the best of our knowledge, OneGen is the first to enable LLMs to conduct vector retrieval during the generation.

The primary aim of Knowledge Graph embeddings (KGE) is to learn low-dimensional representations of entities and relations for predicting missing facts. While rotation-based methods like RotatE and QuatE perform well in KGE, they face two challenges: limited model flexibility requiring proportional increases in relation size with entity dimension, and difficulties in generalizing the model for higher-dimensional rotations. To address these issues, we introduce OrthogonalE, a novel KGE model employing matrices for entities and block-diagonal orthogonal matrices with Riemannian optimization for relations. This approach enhances the generality and flexibility of KGE models. The experimental results indicate that our new KGE model, OrthogonalE, is both general and flexible, significantly outperforming state-of-the-art KGE models while substantially reducing the number of relation parameters.

The impressive performance of proprietary LLMs like GPT4 in code generation has led to a trend to replicate these capabilities in open-source models through knowledge distillation (e.g. Code Evol-Instruct). However, these efforts often neglect the crucial aspect of response quality, relying heavily on teacher models for direct response distillation. This paradigm, especially for complex instructions, can degrade the quality of synthesized data, compromising the knowledge distillation process. To this end, our study introduces the Adaptive Modular Response Evolution (AMR-Evol) framework, which employs a two-stage process to refine response distillation. The first stage, modular decomposition, breaks down the direct response into more manageable sub-modules. The second stage, adaptive response evolution, automatically evolves the response with the related function modules. Our experiments with three popular code benchmarks (HumanEval, MBPP, and EvalPlus) attest to the superiority of the AMR-Evol framework over baseline response distillation methods. By comparing with the open-source Code LLMs trained on a similar scale of data, we observed performance enhancements: more than +3.0 points on HumanEval-Plus and +1.0 points on MBPP-Plus, which underscores the effectiveness of our framework. Our codes are available at //github.com/ChiYeungLaw/AMR-Evol.

The impressive performance of Large Language Models (LLMs) has consistently surpassed numerous human-designed benchmarks, presenting new challenges in assessing the shortcomings of LLMs. Designing tasks and finding LLMs' limitations are becoming increasingly important. In this paper, we investigate the question of whether an LLM can discover its own limitations from the errors it makes. To this end, we propose a Self-Challenge evaluation framework with human-in-the-loop. Starting from seed instances that GPT-4 fails to answer, we prompt GPT-4 to summarize error patterns that can be used to generate new instances and incorporate human feedback on them to refine these patterns for generating more challenging data, iteratively. We end up with 8 diverse patterns, such as text manipulation and questions with assumptions. We then build a benchmark, SC-G4, consisting of 1,835 instances generated by GPT-4 using these patterns, with human-annotated gold responses. The SC-G4 serves as a challenging benchmark that allows for a detailed assessment of LLMs' abilities. Our results show that only 44.96\% of instances in SC-G4 can be answered correctly by GPT-4. Interestingly, our pilot study indicates that these error patterns also challenge other LLMs, such as Claude-3 and Llama-3, and cannot be fully resolved through fine-tuning. Our work takes the first step to demonstrate that LLMs can autonomously identify their inherent flaws and provide insights for future dynamic and automatic evaluation.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

Weakly-Supervised Object Detection (WSOD) and Localization (WSOL), i.e., detecting multiple and single instances with bounding boxes in an image using image-level labels, are long-standing and challenging tasks in the CV community. With the success of deep neural networks in object detection, both WSOD and WSOL have received unprecedented attention. Hundreds of WSOD and WSOL methods and numerous techniques have been proposed in the deep learning era. To this end, in this paper, we consider WSOL is a sub-task of WSOD and provide a comprehensive survey of the recent achievements of WSOD. Specifically, we firstly describe the formulation and setting of the WSOD, including the background, challenges, basic framework. Meanwhile, we summarize and analyze all advanced techniques and training tricks for improving detection performance. Then, we introduce the widely-used datasets and evaluation metrics of WSOD. Lastly, we discuss the future directions of WSOD. We believe that these summaries can help pave a way for future research on WSOD and WSOL.

北京阿比特科技有限公司