Many forms of dependence manifest themselves over time, with behavior of variables in dynamical systems as a paradigmatic example. This paper studies temporal dependence in dynamical systems from a logical perspective, by extending a minimal modal base logic of static functional dependencies. We define a logic for dynamical systems with single time steps, provide a complete axiomatic proof calculus, and show the decidability of the satisfiability problem for a substantial fragment. The system comes in two guises: modal and first-order, that naturally complement each other. Next, we consider a timed semantics for our logic, as an intermediate between state spaces and temporal universes for the unfoldings of a dynamical system. We prove completeness and decidability by combining techniques from dynamic-epistemic logic and modal logic of functional dependencies with complex terms for objects. Also, we extend these results to the timed logic with functional symbols and term identity. Finally, we conclude with a brief outlook on how the system proposed here connects with richer temporal logics of system behavior, and with dynamic topological logic.
In this paper, we provide sufficient conditions for dissipativity and local asymptotic stability of discrete-time dynamical systems parametrized by deep neural networks. We leverage the representation of neural networks as pointwise affine maps, thus exposing their local linear operators and making them accessible to classical system analytic and design methods. This allows us to "crack open the black box" of the neural dynamical system's behavior by evaluating their dissipativity, and estimating their stationary points and state-space partitioning. We relate the norms of these local linear operators to the energy stored in the dissipative system with supply rates represented by their aggregate bias terms. Empirically, we analyze the variance in dynamical behavior and eigenvalue spectra of these local linear operators with varying weight factorizations, activation functions, bias terms, and depths.
We present categories of open dynamical systems with general time evolution as categories of coalgebras opindexed by polynomial interfaces, and show how this extends the coalgebraic framework to capture common scientific applications such as ordinary differential equations, open Markov processes, and random dynamical systems. We then extend Spivak's operad Org to this setting, and construct associated monoidal categories whose morphisms represent hierarchical open systems; when their interfaces are simple, these categories supply canonical comonoid structures. We exemplify these constructions using the `Laplace doctrine', which provides dynamical semantics for active inference, and indicate some connections to Bayesian inversion and coalgebraic logic.
We study the class of dependence models for spatial data obtained from Cauchy convolution processes based on different types of kernel functions. We show that the resulting spatial processes have appealing tail dependence properties, such as tail dependence at short distances and independence at long distances with suitable kernel functions. We derive the extreme-value limits of these processes, study their smoothness properties, and detail some interesting special cases. To get higher flexibility at sub-asymptotic levels and separately control the bulk and the tail dependence properties, we further propose spatial models constructed by mixing a Cauchy convolution process with a Gaussian process. We demonstrate that this framework indeed provides a rich class of models for the joint modeling of the bulk and the tail behaviors. Our proposed inference approach relies on matching model-based and empirical summary statistics, and an extensive simulation study shows that it yields accurate estimates. We demonstrate our new methodology by application to a temperature dataset measured at 97 monitoring stations in the state of Oklahoma, US. Our results indicate that our proposed model provides a very good fit to the data, and that it captures both the bulk and the tail dependence structures accurately.
A mobile robot's precise location information is critical for navigation and task processing, especially for a multi-robot system (MRS) to collaborate and collect valuable data from the field. However, a robot in situations where it does not have access to GPS signals, such as in an environmentally controlled, indoor, or underground environment, finds it difficult to locate using its sensor alone. As a result, robots sharing their local information to improve their localization estimates benefit the entire MRS team. There have been several attempts to model-based multi-robot localization using Radio Signal Strength Indicator (RSSI) as a source to calculate bearing information. We also utilize the RSSI for wireless networks generated through the communication of multiple robots in a system and aim to localize agents with high accuracy and efficiency in a dynamic environment for shared information fusion to refine the localization estimation. This estimator structure reduces one source of measurement correlation while appropriately incorporating others. This paper proposes a decentralized Multi-robot Synergistic Localization System (MRSL) for a dense and dynamic environment. Robots update their position estimation whenever new information receives from their neighbors. When the system senses the presence of other robots in the region, it exchanges position estimates and merges the received data to improve its localization accuracy. Our approach uses Bayesian rule-based integration, which has shown to be computationally efficient and applicable to asynchronous robotics communication. We have performed extensive simulation experiments with a varying number of robots to analyze the algorithm. MRSL's localization accuracy with RSSI outperformed other algorithms from the literature, showing a significant promise for future development.
Fairness emerged as an important requirement to guarantee that Machine Learning (ML) predictive systems do not discriminate against specific individuals or entire sub-populations, in particular, minorities. Given the inherent subjectivity of viewing the concept of fairness, several notions of fairness have been introduced in the literature. This paper is a survey that illustrates the subtleties between fairness notions through a large number of examples and scenarios. In addition, unlike other surveys in the literature, it addresses the question of: which notion of fairness is most suited to a given real-world scenario and why? Our attempt to answer this question consists in (1) identifying the set of fairness-related characteristics of the real-world scenario at hand, (2) analyzing the behavior of each fairness notion, and then (3) fitting these two elements to recommend the most suitable fairness notion in every specific setup. The results are summarized in a decision diagram that can be used by practitioners and policymakers to navigate the relatively large catalog of ML.
A classic result in formal language theory is the equivalence among noncounting, or aperiodic, regular languages, and languages defined through star-free regular expressions, or first-order logic. Together with first-order completeness of linear temporal logic these results constitute a theoretical foundation for model-checking algorithms. Extending these results to structured subclasses of context-free languages, such as tree-languages did not work as smoothly: for instance W. Thomas showed that there are star-free tree languages that are counting. We show, instead, that investigating the same properties within the family of operator precedence languages leads to equivalences that perfectly match those on regular languages. The study of this old family of context-free languages has been recently resumed to enhance not only parsing (the original motivation of its inventor R. Floyd) but also to exploit their algebraic and logic properties. We have been able to reproduce the classic results of regular languages for this much larger class by going back to string languages rather than tree languages. Since operator precedence languages strictly include other classes of structured languages such as visibly pushdown languages, the same results given in this paper hold as trivial corollary for that family too.
Evolutionary algorithms are bio-inspired algorithms that can easily adapt to changing environments. Recent results in the area of runtime analysis have pointed out that algorithms such as the (1+1)~EA and Global SEMO can efficiently reoptimize linear functions under a dynamic uniform constraint. Motivated by this study, we investigate single- and multi-objective baseline evolutionary algorithms for the classical knapsack problem where the capacity of the knapsack varies over time. We establish different benchmark scenarios where the capacity changes every $\tau$ iterations according to a uniform or normal distribution. Our experimental investigations analyze the behavior of our algorithms in terms of the magnitude of changes determined by parameters of the chosen distribution, the frequency determined by $\tau$, and the class of knapsack instance under consideration. Our results show that the multi-objective approaches using a population that caters for dynamic changes have a clear advantage on many benchmarks scenarios when the frequency of changes is not too high. Furthermore, we demonstrate that the diversity mechanisms used in popular evolutionary multi-objective algorithms such as NSGA-II and SPEA2 do not necessarily result in better performance and even lead to inferior results compared to our simple multi-objective approaches.
Collision avoidance for multirobot systems is a well-studied problem. Recently, control barrier functions (CBFs) have been proposed for synthesizing controllers that guarantee collision avoidance and goal stabilization for multiple robots. However, it has been noted that reactive control synthesis methods (such as CBFs) are prone to \textit{deadlock}, an equilibrium of system dynamics that causes the robots to stall before reaching their goals. In this paper, we analyze the closed-loop dynamics of robots using CBFs, to characterize controller parameters, initial conditions, and goal locations that invariably lead the system to deadlock. Using tools from duality theory, we derive geometric properties of robot configurations of an $N$ robot system once it is in deadlock and we justify them using the mechanics interpretation of KKT conditions. Our key deductions are that 1) system deadlock is characterized by a force-equilibrium on robots and 2) deadlock occurs to ensure safety when safety is on the brink of being violated. These deductions allow us to interpret deadlock as a subset of the state space, and we show that this set is non-empty and located on the boundary of the safe set. By exploiting these properties, we analyze the number of admissible robot configurations in deadlock and develop a provably-correct decentralized algorithm for deadlock resolution to safely deliver the robots to their goals. This algorithm is validated in simulations as well as experimentally on Khepera-IV robots.
With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.
Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.