亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generating 3D scenes is a challenging open problem, which requires synthesizing plausible content that is fully consistent in 3D space. While recent methods such as neural radiance fields excel at view synthesis and 3D reconstruction, they cannot synthesize plausible details in unobserved regions since they lack a generative capability. Conversely, existing generative methods are typically not capable of reconstructing detailed, large-scale scenes in the wild, as they use limited-capacity 3D scene representations, require aligned camera poses, or rely on additional regularizers. In this work, we introduce the first diffusion model able to perform fast, detailed reconstruction and generation of real-world 3D scenes. To achieve this, we make three contributions. First, we introduce a new neural scene representation, IB-planes, that can efficiently and accurately represent large 3D scenes, dynamically allocating more capacity as needed to capture details visible in each image. Second, we propose a denoising-diffusion framework to learn a prior over this novel 3D scene representation, using only 2D images without the need for any additional supervision signal such as masks or depths. This supports 3D reconstruction and generation in a unified architecture. Third, we develop a principled approach to avoid trivial 3D solutions when integrating the image-based rendering with the diffusion model, by dropping out representations of some images. We evaluate the model on several challenging datasets of real and synthetic images, and demonstrate superior results on generation, novel view synthesis and 3D reconstruction.

相關內容

 3D是英文“Three Dimensions”的簡稱,中文是指三維、三個維度、三個坐標,即有長、有寬、有高,換句話說,就是立體的,是相對于只有長和寬的平面(2D)而言。

With diverse presentation forgery methods emerging continually, detecting the authenticity of images has drawn growing attention. Although existing methods have achieved impressive accuracy in training dataset detection, they still perform poorly in the unseen domain and suffer from forgery of irrelevant information such as background and identity, affecting generalizability. To solve this problem, we proposed a novel framework Selective Domain-Invariant Feature (SDIF), which reduces the sensitivity to face forgery by fusing content features and styles. Specifically, we first use a Farthest-Point Sampling (FPS) training strategy to construct a task-relevant style sample representation space for fusing with content features. Then, we propose a dynamic feature extraction module to generate features with diverse styles to improve the performance and effectiveness of the feature extractor. Finally, a domain separation strategy is used to retain domain-related features to help distinguish between real and fake faces. Both qualitative and quantitative results in existing benchmarks and proposals demonstrate the effectiveness of our approach.

Recent years have witnessed remarkable advances in artificial intelligence generated content(AIGC), with diverse input modalities, e.g., text, image, video, audio and 3D. The 3D is the most close visual modality to real-world 3D environment and carries enormous knowledge. The 3D content generation shows both academic and practical values while also presenting formidable technical challenges. This review aims to consolidate developments within the burgeoning domain of 3D content generation. Specifically, a new taxonomy is proposed that categorizes existing approaches into three types: 3D native generative methods, 2D prior-based 3D generative methods, and hybrid 3D generative methods. The survey covers approximately 60 papers spanning the major techniques. Besides, we discuss limitations of current 3D content generation techniques, and point out open challenges as well as promising directions for future work. Accompanied with this survey, we have established a project website where the resources on 3D content generation research are provided. The project page is available at //github.com/hitcslj/Awesome-AIGC-3D.

User response prediction is essential in industrial recommendation systems, such as online display advertising. Among all the features in recommendation models, user behaviors are among the most critical. Many works have revealed that a user's behavior reflects her interest in the candidate item, owing to the semantic or temporal correlation between behaviors and the candidate. While the literature has individually examined each of these correlations, researchers have yet to analyze them in combination, that is, the semantic-temporal correlation. We empirically measure this correlation and observe intuitive yet robust patterns. We then examine several popular user interest models and find that, surprisingly, none of them learn such correlation well. To fill this gap, we propose a Temporal Interest Network (TIN) to capture the semantic-temporal correlation simultaneously between behaviors and the target. We achieve this by incorporating target-aware temporal encoding, in addition to semantic encoding, to represent behaviors and the target. Furthermore, we conduct explicit 4-way interaction by deploying target-aware attention and target-aware representation to capture both semantic and temporal correlation. We conduct comprehensive evaluations on two popular public datasets, and our proposed TIN outperforms the best-performing baselines by 0.43% and 0.29% on GAUC, respectively. During online A/B testing in Tencent's advertising platform, TIN achieves 1.65% cost lift and 1.93% GMV lift over the base model. It has been successfully deployed in production since October 2023, serving the WeChat Moments traffic. We have released our code at //github.com/zhouxy1003/TIN.

Audio-visual segmentation (AVS) aims to segment the sounding objects in video frames. Although great progress has been witnessed, we experimentally reveal that current methods reach marginal performance gain within the use of the unlabeled frames, leading to the underutilization issue. To fully explore the potential of the unlabeled frames for AVS, we explicitly divide them into two categories based on their temporal characteristics, i.e., neighboring frame (NF) and distant frame (DF). NFs, temporally adjacent to the labeled frame, often contain rich motion information that assists in the accurate localization of sounding objects. Contrary to NFs, DFs have long temporal distances from the labeled frame, which share semantic-similar objects with appearance variations. Considering their unique characteristics, we propose a versatile framework that effectively leverages them to tackle AVS. Specifically, for NFs, we exploit the motion cues as the dynamic guidance to improve the objectness localization. Besides, we exploit the semantic cues in DFs by treating them as valid augmentations to the labeled frames, which are then used to enrich data diversity in a self-training manner. Extensive experimental results demonstrate the versatility and superiority of our method, unleashing the power of the abundant unlabeled frames.

The advent of ChatGPT has sparked over a year of regulatory frenzy. However, few existing studies have rigorously questioned the assumption that, if left unregulated, AI chatbot's output would inflict tangible, severe real harm on human affairs. Most researchers have overlooked the critical possibility that the information market itself can effectively mitigate these risks and, as a result, they tend to use regulatory tools to address the issue directly. This Article develops a yardstick for reevaluating both AI-related content risks and corresponding regulatory proposals by focusing on inter-informational competition among various outlets. The decades-long history of regulating information and communications technologies indicates that regulators tend to err too much on the side of caution and to put forward excessive regulatory measures when encountering the uncertainties brought about by new technologies. In fact, a trove of empirical evidence has demonstrated that market competition among information outlets can effectively mitigate most risks and that overreliance on regulation is not only unnecessary but detrimental, as well. This Article argues that sufficient competition among chatbots and other information outlets in the information marketplace can sufficiently mitigate and even resolve most content risks posed by generative AI technologies. This renders certain loudly advocated regulatory strategies, like mandatory prohibitions, licensure, curation of datasets, and notice-and-response regimes, truly unnecessary and even toxic to desirable competition and innovation throughout the AI industry. Ultimately, the ideas that I advance in this Article should pour some much-needed cold water on the regulatory frenzy over generative AI and steer the issue back to a rational track.

The ethical need to protect AI-generated content has been a significant concern in recent years. While existing watermarking strategies have demonstrated success in detecting synthetic content (detection), there has been limited exploration in identifying the users responsible for generating these outputs from a single model (owner identification). In this paper, we focus on both practical scenarios and propose a unified watermarking framework for content copyright protection within the context of diffusion models. Specifically, we consider two parties: the model provider, who grants public access to a diffusion model via an API, and the users, who can solely query the model API and generate images in a black-box manner. Our task is to embed hidden information into the generated contents, which facilitates further detection and owner identification. To tackle this challenge, we propose a Watermark-conditioned Diffusion model called WaDiff, which manipulates the watermark as a conditioned input and incorporates fingerprinting into the generation process. All the generative outputs from our WaDiff carry user-specific information, which can be recovered by an image extractor and further facilitate forensic identification. Extensive experiments are conducted on two popular diffusion models, and we demonstrate that our method is effective and robust in both the detection and owner identification tasks. Meanwhile, our watermarking framework only exerts a negligible impact on the original generation and is more stealthy and efficient in comparison to existing watermarking strategies.

The analysis of screening experiments is often done in two stages, starting with factor selection via an analysis under a main effects model. The success of this first stage is influenced by three components: (1) main effect estimators' variances and (2) bias, and (3) the estimate of the noise variance. Component (3) has only recently been given attention with design techniques that ensure an unbiased estimate of the noise variance. In this paper, we propose a design criterion based on expected confidence intervals of the first stage analysis that balances all three components. To address model misspecification, we propose a computationally-efficient all-subsets analysis and a corresponding constrained design criterion based on lack-of-fit. Scenarios found in existing design literature are revisited with our criteria and new designs are provided that improve upon existing methods.

The ever-evolving social media discourse has witnessed an overwhelming use of memes to express opinions or dissent. Besides being misused for spreading malcontent, they are mined by corporations and political parties to glean the public's opinion. Therefore, memes predominantly offer affect-enriched insights towards ascertaining the societal psyche. However, the current approaches are yet to model the affective dimensions expressed in memes effectively. They rely extensively on large multimodal datasets for pre-training and do not generalize well due to constrained visual-linguistic grounding. In this paper, we introduce MOOD (Meme emOtiOns Dataset), which embodies six basic emotions. We then present ALFRED (emotion-Aware muLtimodal Fusion foR Emotion Detection), a novel multimodal neural framework that (i) explicitly models emotion-enriched visual cues, and (ii) employs an efficient cross-modal fusion via a gating mechanism. Our investigation establishes ALFRED's superiority over existing baselines by 4.94% F1. Additionally, ALFRED competes strongly with previous best approaches on the challenging Memotion task. We then discuss ALFRED's domain-agnostic generalizability by demonstrating its dominance on two recently-released datasets - HarMeme and Dank Memes, over other baselines. Further, we analyze ALFRED's interpretability using attention maps. Finally, we highlight the inherent challenges posed by the complex interplay of disparate modality-specific cues toward meme analysis.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.

北京阿比特科技有限公司