亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Our goal is to compute excited states for the nonlinear Schr{\"o}dinger equation in the radial setting. We introduce a new technique based on the Nehari manifold approach and give a comparison with the classical shooting method. We observe that the Nehari method allows to accurately compute excited states on large domains but is relatively slow compared to the shooting method.

相關內容

Causality plays an important role in understanding intelligent behavior, and there is a wealth of literature on mathematical models for causality, most of which is focused on causal graphs. Causal graphs are a powerful tool for a wide range of applications, in particular when the relevant variables are known and at the same level of abstraction. However, the given variables can also be unstructured data, like pixels of an image. Meanwhile, the causal variables, such as the positions of objects in the image, can be arbitrary deterministic functions of the given variables. Moreover, the causal variables may form a hierarchy of abstractions, in which the macro-level variables are deterministic functions of the micro-level variables. Causal graphs are limited when it comes to modeling this kind of situation. In the presence of deterministic relationships there is generally no causal graph that satisfies both the Markov condition and the faithfulness condition. We introduce factored space models as an alternative to causal graphs which naturally represent both probabilistic and deterministic relationships at all levels of abstraction. Moreover, we introduce structural independence and establish that it is equivalent to statistical independence in every distribution that factorizes over the factored space. This theorem generalizes the classical soundness and completeness theorem for d-separation.

We study the convergence of a novel family of thermodynamically compatible schemes for hyperbolic systems (HTC schemes) in the framework of dissipative weak solutions, applied to the Euler equations of compressible gas dynamics. Two key novelties of our method are i) entropy is treated as one of the main field quantities and ii) the total energy conservation is a consequence of compatible discretization and application of the Abgrall flux.

In a Jacobi--Davidson (JD) type method for singular value decomposition (SVD) problems, called JDSVD, a large symmetric and generally indefinite correction equation is solved iteratively at each outer iteration, which constitutes the inner iterations and dominates the overall efficiency of JDSVD. In this paper, a convergence analysis is made on the minimal residual (MINRES) method for the correction equation. Motivated by the results obtained, at each outer iteration a new correction equation is derived that extracts useful information from current subspaces to construct effective preconditioners for the correction equation and is proven to retain the same convergence of outer iterations of JDSVD.The resulting method is called inner preconditioned JDSVD (IPJDSVD) method; it is also a new JDSVD method, and any viable preconditioner for the correction equations in JDSVD is straightforwardly applicable to those in IPJDSVD. Convergence results show that MINRES for the new correction equation can converge much faster when there is a cluster of singular values closest to a given target. A new thick-restart IPJDSVD algorithm with deflation and purgation is proposed that simultaneously accelerates the outer and inner convergence of the standard thick-restart JDSVD and computes several singular triplets. Numerical experiments justify the theory and illustrate the considerable superiority of IPJDSVD to JDSVD, and demonstrate that a similar two-stage IPJDSVD algorithm substantially outperforms the most advanced PRIMME\_SVDS software nowadays for computing the smallest singular triplets.

This work presents a numerical analysis of a Discontinuous Galerkin (DG) method for a transformed master equation modeling an open quantum system: a quantum sub-system interacting with a noisy environment. It is shown that the presented transformed master equation has a reduced computational cost in comparison to a Wigner-Fokker-Planck model of the same system for the general case of non-harmonic potentials via DG schemes. Specifics of a Discontinuous Galerkin (DG) numerical scheme adequate for the system of convection-diffusion equations obtained for our Lindblad master equation in position basis are presented. This lets us solve computationally the transformed system of interest modeling our open quantum system problem. The benchmark case of a harmonic potential is then presented, for which the numerical results are compared against the analytical steady-state solution of this problem. Two non-harmonic cases are then presented: the linear and quartic potentials are modeled via our DG framework, for which we show our numerical results.

We establish a general convergence theory of the Rayleigh--Ritz method and the refined Rayleigh--Ritz method for computing some simple eigenpair $(\lambda_{*},x_{*})$ of a given analytic regular nonlinear eigenvalue problem (NEP). In terms of the deviation $\varepsilon$ of $x_{*}$ from a given subspace $\mathcal{W}$, we establish a priori convergence results on the Ritz value, the Ritz vector and the refined Ritz vector. The results show that, as $\varepsilon\rightarrow 0$, there exists a Ritz value that unconditionally converges to $\lambda_*$ and the corresponding refined Ritz vector does so too but the Ritz vector converges conditionally and it may fail to converge and even may not be unique. We also present an error bound for the approximate eigenvector in terms of the computable residual norm of a given approximate eigenpair, and give lower and upper bounds for the error of the refined Ritz vector and the Ritz vector as well as for that of the corresponding residual norms. These results nontrivially extend some convergence results on these two methods for the linear eigenvalue problem to the NEP. Examples are constructed to illustrate the main results.

This work studies the parameter-dependent diffusion equation in a two-dimensional domain consisting of locally mirror symmetric layers. It is assumed that the diffusion coefficient is a constant in each layer. The goal is to find approximate parameter-to-solution maps that have a small number of terms. It is shown that in the case of two layers one can find a solution formula consisting of three terms with explicit dependencies on the diffusion coefficient. The formula is based on decomposing the solution into orthogonal parts related to both of the layers and the interface between them. This formula is then expanded to an approximate one for the multi-layer case. We give an analytical formula for square layers and use the finite element formulation for more general layers. The results are illustrated with numerical examples and have applications for reduced basis methods by analyzing the Kolmogorov n-width.

We propose and analyse a novel, fully discrete numerical algorithm for the approximation of the generalised Stokes system forced by transport noise -- a prototype model for non-Newtonian fluids including turbulence. Utilising the Gradient Discretisation Method, we show that the algorithm is long-term stable for a broad class of particular Gradient Discretisations. Building on the long-term stability and the derived continuity of the algorithm's solution operator, we construct two sequences of approximate invariant measures. At the moment, each sequence lacks one important feature: either the existence of a limit measure, or the invariance with respect to the discrete semigroup. We derive an abstract condition that merges both properties, recovering the existence of an invariant measure. We provide an example for which invariance and existence hold simultaneously, and characterise the invariant measure completely. We close the article by conducting two numerical experiments that show the influence of transport noise on the dynamics of power-law fluids; in particular, we find that transport noise enhances the dissipation of kinetic energy, the mixing of particles, as well as the size of vortices.

The notion of a non-deterministic logical matrix (where connectives are interpreted as multi-functions) extends the traditional semantics for propositional logics based on logical matrices (where connectives are interpreted as functions). This extension allows for finitely characterizing a much wider class of logics, and has proven decisive in a myriad of recent compositionality results. In this paper we show that the added expressivity brought by non-determinism also has its drawbacks, and in particular that the problem of determining whether two given finite non-deterministic matrices are equivalent, in the sense that they induce the same logic, becomes undecidable. We also discuss some workable sufficient conditions and particular cases, namely regarding rexpansion homomorphisms and bridges to calculi.

Gradient Descent (GD) and Conjugate Gradient (CG) methods are among the most effective iterative algorithms for solving unconstrained optimization problems, particularly in machine learning and statistical modeling, where they are employed to minimize cost functions. In these algorithms, tunable parameters, such as step sizes or conjugate parameters, play a crucial role in determining key performance metrics, like runtime and solution quality. In this work, we introduce a framework that models algorithm selection as a statistical learning problem, and thus learning complexity can be estimated by the pseudo-dimension of the algorithm group. We first propose a new cost measure for unconstrained optimization algorithms, inspired by the concept of primal-dual integral in mixed-integer linear programming. Based on the new cost measure, we derive an improved upper bound for the pseudo-dimension of gradient descent algorithm group by discretizing the set of step size configurations. Moreover, we generalize our findings from gradient descent algorithm to the conjugate gradient algorithm group for the first time, and prove the existence a learning algorithm capable of probabilistically identifying the optimal algorithm with a sufficiently large sample size.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

北京阿比特科技有限公司