We propose the Multi-Head Density Adaptive Attention Mechanism (DAAM), a novel probabilistic attention framework that can be used for Parameter-Efficient Fine-tuning (PEFT), and the Density Adaptive Transformer (DAT), designed to enhance information aggregation across multiple modalities, including Speech, Text, and Vision. DAAM integrates learnable mean and variance into its attention mechanism, implemented in a multi-head framework, enabling it to collectively model any probability distribution for dynamic recalibration of feature significance. This method demonstrates significant improvements, especially with highly non-stationary data, surpassing the state-of-the-art attention techniques in model performance, up to approximately +20% (abs.) in accuracy. Empirically, DAAM exhibits superior adaptability and efficacy across a diverse range of tasks, including emotion recognition in speech, image classification, and text classification, thereby establishing its robustness and versatility in handling data across multiple modalities. Furthermore, we introduce the Importance Factor, a new learning-based metric that enhances the explainability of models trained with DAAM-based methods.
The Cancer Registry of Norway (CRN) is a part of the Norwegian Institute of Public Health (NIPH) and is tasked with producing statistics on cancer among the Norwegian population. For this task, CRN develops, tests, and evolves a software system called Cancer Registration Support System (CaReSS). It is a complex socio-technical software system that interacts with many entities (e.g., hospitals, medical laboratories, and other patient registries) to achieve its task. For cost-effective testing of CaReSS, CRN has employed EvoMaster, an AI-based REST API testing tool combined with an integrated classical machine learning model. Within this context, we propose Qlinical to investigate the feasibility of using, inside EvoMaster, a Quantum Neural Network (QNN) classifier, i.e., a quantum machine learning model, instead of the existing classical machine learning model. Results indicate that Qlinical can achieve performance comparable to that of EvoClass. We further explore the effects of various QNN configurations on performance and offer recommendations for optimal QNN settings for future QNN developers.
In this paper, we examine the impact of lexicalization on Question Answering over Linked Data (QALD). It is well known that one of the key challenges in interpreting natural language questions with respect to SPARQL lies in bridging the lexical gap, that is mapping the words in the query to the correct vocabulary elements. We argue in this paper that lexicalization, that is explicit knowledge about the potential interpretations of a word with respect to the given vocabulary, significantly eases the task and increases the performance of QA systems. Towards this goal, we present a compositional QA system that can leverage explicit lexical knowledge in a compositional manner to infer the meaning of a question in terms of a SPARQL query. We show that such a system, given lexical knowledge, has a performance well beyond current QA systems, achieving up to a $35.8\%$ increase in the micro $F_1$ score compared to the best QA system on QALD-9. This shows the importance and potential of including explicit lexical knowledge. In contrast, we show that LLMs have limited abilities to exploit lexical knowledge, with only marginal improvements compared to a version without lexical knowledge. This shows that LLMs have no ability to compositionally interpret a question on the basis of the meaning of its parts, a key feature of compositional approaches. Taken together, our work shows new avenues for QALD research, emphasizing the importance of lexicalization and compositionality.
Owing to advancements in deep learning technology, Vision Transformers (ViTs) have demonstrated impressive performance in various computer vision tasks. Nonetheless, ViTs still face some challenges, such as high computational complexity and the absence of desirable inductive biases. To alleviate these issues, {the potential advantages of combining eagle vision with ViTs are explored. We summarize a Bi-Fovea Visual Interaction (BFVI) structure inspired by the unique physiological and visual characteristics of eagle eyes. A novel Bi-Fovea Self-Attention (BFSA) mechanism and Bi-Fovea Feedforward Network (BFFN) are proposed based on this structural design approach, which can be used to mimic the hierarchical and parallel information processing scheme of the biological visual cortex, enabling networks to learn feature representations of targets in a coarse-to-fine manner. Furthermore, a Bionic Eagle Vision (BEV) block is designed as the basic building unit based on the BFSA mechanism and BFFN. By stacking BEV blocks, a unified and efficient family of pyramid backbone networks called Eagle Vision Transformers (EViTs) is developed. Experimental results show that EViTs exhibit highly competitive performance in various computer vision tasks, such as image classification, object detection and semantic segmentation. Compared with other approaches, EViTs have significant advantages, especially in terms of performance and computational efficiency. Code is available at //github.com/nkusyl/EViT
This paper introduces distribution-based prediction, a novel approach to using Large Language Models (LLMs) as predictive tools by interpreting output token probabilities as distributions representing the models' learned representation of the world. This distribution-based nature offers an alternative perspective for analyzing algorithmic fidelity, complementing the approach used in silicon sampling. We demonstrate the use of distribution-based prediction in the context of recent United States presidential election, showing that this method can be used to determine task specific bias, prompt noise, and algorithmic fidelity. This approach has significant implications for assessing the reliability and increasing transparency of LLM-based predictions across various domains.
Scene Text Editing (STE) is a challenging research problem, that primarily aims towards modifying existing texts in an image while preserving the background and the font style of the original text. Despite its utility in numerous real-world applications, existing style-transfer-based approaches have shown sub-par editing performance due to (1) complex image backgrounds, (2) diverse font attributes, and (3) varying word lengths within the text. To address such limitations, in this paper, we propose a novel font-agnostic scene text editing and rendering framework, named FASTER, for simultaneously generating text in arbitrary styles and locations while preserving a natural and realistic appearance and structure. A combined fusion of target mask generation and style transfer units, with a cascaded self-attention mechanism has been proposed to focus on multi-level text region edits to handle varying word lengths. Extensive evaluation on a real-world database with further subjective human evaluation study indicates the superiority of FASTER in both scene text editing and rendering tasks, in terms of model performance and efficiency. Our code will be released upon acceptance.
Retrieval-Augmented Generation (RAG) has been shown to improve knowledge capabilities and alleviate the hallucination problem of LLMs. The Web is a major source of external knowledge used in RAG systems, and many commercial systems such as ChatGPT and Perplexity have used Web search engines as their major retrieval systems. Typically, such RAG systems retrieve search results, download HTML sources of the results, and then extract plain texts from the HTML sources. Plain text documents or chunks are fed into the LLMs to augment the generation. However, much of the structural and semantic information inherent in HTML, such as headings and table structures, is lost during this plain-text-based RAG process. To alleviate this problem, we propose HtmlRAG, which uses HTML instead of plain text as the format of retrieved knowledge in RAG. We believe HTML is better than plain text in modeling knowledge in external documents, and most LLMs possess robust capacities to understand HTML. However, utilizing HTML presents new challenges. HTML contains additional content such as tags, JavaScript, and CSS specifications, which bring extra input tokens and noise to the RAG system. To address this issue, we propose HTML cleaning, compression, and pruning strategies, to shorten the HTML while minimizing the loss of information. Specifically, we design a two-step block-tree-based pruning method that prunes useless HTML blocks and keeps only the relevant part of the HTML. Experiments on six QA datasets confirm the superiority of using HTML in RAG systems.
Preference optimization, particularly through Reinforcement Learning from Human Feedback (RLHF), has achieved significant success in aligning Large Language Models (LLMs) to adhere to human intentions. Unlike offline alignment with a fixed dataset, online feedback collection from humans or AI on model generations typically leads to more capable reward models and better-aligned LLMs through an iterative process. However, achieving a globally accurate reward model requires systematic exploration to generate diverse responses that span the vast space of natural language. Random sampling from standard reward-maximizing LLMs alone is insufficient to fulfill this requirement. To address this issue, we propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions. By solving the inner-level problem with the reparameterized reward function, the resulting algorithm, named Self-Exploring Language Models (SELM), eliminates the need for a separate RM and iteratively updates the LLM with a straightforward objective. Compared to Direct Preference Optimization (DPO), the SELM objective reduces indiscriminate favor of unseen extrapolations and enhances exploration efficiency. Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, SELM significantly boosts the performance on instruction-following benchmarks such as MT-Bench and AlpacaEval 2.0, as well as various standard academic benchmarks in different settings. Our code and models are available at //github.com/shenao-zhang/SELM.
We introduce NinjaDoH, a novel DNS over HTTPS (DoH) protocol that leverages the InterPlanetary Name System (IPNS), along with public cloud infrastructure, to create a censorship-resistant moving target DoH service. NinjaDoH is specifically designed to evade traditional censorship methods that involve blocking DoH servers by IP addresses or domains by continually altering the server's network identifiers, significantly increasing the complexity of effectively censoring NinjaDoH traffic without disruption of other web traffic. We also present an analysis that quantifies the DNS query latency and financial costs of running our implementation of this protocol as a service. Further tests assess the ability of NinjaDoH to elude detection mechanisms, including both commercial firewall products and advanced machine learning-based detection systems. The results broadly support NinjaDoH's efficacy as a robust, moving target DNS solution that can ensure continuous and secure internet access in environments with heavy DNS-based censorship.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.