亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Industry 4.0 has brought numerous advantages, such as increasing productivity through automation. However, it also presents major cybersecurity issues such as cyberattacks affecting industrial processes. Federated Learning (FL) combined with time-series analysis is a promising cyberattack detection mechanism proposed in the literature. However, the fact of having a single point of failure and network bottleneck are critical challenges that need to be tackled. Thus, this article explores the benefits of the Decentralized Federated Learning (DFL) in terms of cyberattack detection and resource consumption. The work presents TemporalFED, a software module for detecting anomalies in industrial environments using FL paradigms and time series. TemporalFED incorporates three components: Time Series Conversion, Feature Engineering, and Time Series Stationary Conversion. To evaluate TemporalFED, it was deployed on Fedstellar, a DFL framework. Then, a pool of experiments measured the detection performance and resource consumption in a chemical gas industrial environment with different time-series configurations, FL paradigms, and topologies. The results showcase the superiority of the configuration utilizing DFL and Semi-Decentralized Federated Learning (SDFL) paradigms, along with a fully connected topology, which achieved the best performance in anomaly detection. Regarding resource consumption, the configuration without feature engineering employed less bandwidth, CPU, and RAM than other configurations.

相關內容

We propose to replace vector quantization (VQ) in the latent representation of VQ-VAEs with a simple scheme termed finite scalar quantization (FSQ), where we project the VAE representation down to a few dimensions (typically less than 10). Each dimension is quantized to a small set of fixed values, leading to an (implicit) codebook given by the product of these sets. By appropriately choosing the number of dimensions and values each dimension can take, we obtain the same codebook size as in VQ. On top of such discrete representations, we can train the same models that have been trained on VQ-VAE representations. For example, autoregressive and masked transformer models for image generation, multimodal generation, and dense prediction computer vision tasks. Concretely, we employ FSQ with MaskGIT for image generation, and with UViM for depth estimation, colorization, and panoptic segmentation. Despite the much simpler design of FSQ, we obtain competitive performance in all these tasks. We emphasize that FSQ does not suffer from codebook collapse and does not need the complex machinery employed in VQ (commitment losses, codebook reseeding, code splitting, entropy penalties, etc.) to learn expressive discrete representations.

This work aims to learn a high-quality text-to-video (T2V) generative model by leveraging a pre-trained text-to-image (T2I) model as a basis. It is a highly desirable yet challenging task to simultaneously a) accomplish the synthesis of visually realistic and temporally coherent videos while b) preserving the strong creative generation nature of the pre-trained T2I model. To this end, we propose LaVie, an integrated video generation framework that operates on cascaded video latent diffusion models, comprising a base T2V model, a temporal interpolation model, and a video super-resolution model. Our key insights are two-fold: 1) We reveal that the incorporation of simple temporal self-attentions, coupled with rotary positional encoding, adequately captures the temporal correlations inherent in video data. 2) Additionally, we validate that the process of joint image-video fine-tuning plays a pivotal role in producing high-quality and creative outcomes. To enhance the performance of LaVie, we contribute a comprehensive and diverse video dataset named Vimeo25M, consisting of 25 million text-video pairs that prioritize quality, diversity, and aesthetic appeal. Extensive experiments demonstrate that LaVie achieves state-of-the-art performance both quantitatively and qualitatively. Furthermore, we showcase the versatility of pre-trained LaVie models in various long video generation and personalized video synthesis applications.

Inspired by the recent success of large language models (LLMs) like ChatGPT, researchers start to explore the adoption of LLMs for agile hardware design, such as generating design RTL based on natural-language instructions. However, in existing works, their target designs are all relatively simple and in a small scale, and proposed by the authors themselves, making a fair comparison among different LLM solutions challenging. In addition, many prior works only focus on the design correctness, without evaluating the design qualities of generated design RTL. In this work, we propose an open-source benchmark named RTLLM, for generating design RTL with natural language instructions. To systematically evaluate the auto-generated design RTL, we summarized three progressive goals, named syntax goal, functionality goal, and design quality goal. This benchmark can automatically provide a quantitative evaluation of any given LLM-based solution. Furthermore, we propose an easy-to-use yet surprisingly effective prompt engineering technique named self-planning, which proves to significantly boost the performance of GPT-3.5 in our proposed benchmark.

Texture editing is a crucial task in 3D modeling that allows users to automatically manipulate the surface materials of 3D models. However, the inherent complexity of 3D models and the ambiguous text description lead to the challenge in this task. To address this challenge, we propose ITEM3D, an illumination-aware model for automatic 3D object editing according to the text prompts. Leveraging the diffusion models and the differentiable rendering, ITEM3D takes the rendered images as the bridge of text and 3D representation, and further optimizes the disentangled texture and environment map. Previous methods adopt the absolute editing direction namely score distillation sampling (SDS) as the optimization objective, which unfortunately results in the noisy appearance and text inconsistency. To solve the problem caused by the ambiguous text, we introduce a relative editing direction, an optimization objective defined by the noise difference between the source and target texts, to release the semantic ambiguity between the texts and images. Additionally, we gradually adjust the direction during optimization to further address the unexpected deviation in the texture domain. Qualitative and quantitative experiments show that our ITEM3D outperforms the state-of-the-art methods on various 3D objects. We also perform text-guided relighting to show explicit control over lighting.

Visual Reinforcement Learning (Visual RL), coupled with high-dimensional observations, has consistently confronted the long-standing challenge of out-of-distribution generalization. Despite the focus on algorithms aimed at resolving visual generalization problems, we argue that the devil is in the existing benchmarks as they are restricted to isolated tasks and generalization categories, undermining a comprehensive evaluation of agents' visual generalization capabilities. To bridge this gap, we introduce RL-ViGen: a novel Reinforcement Learning Benchmark for Visual Generalization, which contains diverse tasks and a wide spectrum of generalization types, thereby facilitating the derivation of more reliable conclusions. Furthermore, RL-ViGen incorporates the latest generalization visual RL algorithms into a unified framework, under which the experiment results indicate that no single existing algorithm has prevailed universally across tasks. Our aspiration is that RL-ViGen will serve as a catalyst in this area, and lay a foundation for the future creation of universal visual generalization RL agents suitable for real-world scenarios. Access to our code and implemented algorithms is provided at //gemcollector.github.io/RL-ViGen/.

Traffic sign detection is an important research direction in intelligent driving. Unfortunately, existing methods often overlook extreme conditions such as fog, rain, and motion blur. Moreover, the end-to-end training strategy for image denoising and object detection models fails to utilize inter-model information effectively. To address these issues, we propose CCSPNet, an efficient feature extraction module based on Transformers and CNNs, which effectively leverages contextual information, achieves faster inference speed and provides stronger feature enhancement capabilities. Furthermore, we establish the correlation between object detection and image denoising tasks and propose a joint training model, CCSPNet-Joint, to improve data efficiency and generalization. Finally, to validate our approach, we create the CCTSDB-AUG dataset for traffic sign detection in extreme scenarios. Extensive experiments have shown that CCSPNet achieves state-of-the-art performance in traffic sign detection under extreme conditions. Compared to end-to-end methods, CCSPNet-Joint achieves a 5.32% improvement in precision and an 18.09% improvement in [email protected].

We present GlotScript, an open resource and tool for low resource writing system identification. GlotScript-R is a resource that provides the attested writing systems for more than 7,000 languages. It is compiled by aggregating information from existing writing system resources. GlotScript-T is a writing system identification tool that covers all 161 Unicode 15.0 scripts. For an input text, it returns its script distribution where scripts are identified by ISO 15924 codes. We also present two use cases for GlotScript. First, we demonstrate that GlotScript supports cleaning multilingual corpora such as mC4 and OSCAR. Second, we analyze the tokenization of a number of language models such as GPT-4 using GlotScript and provide insights on the coverage of low resource scripts and languages by each language model. We hope that GlotScript will become a useful resource for work on low resource languages in the NLP community. GlotScript-R and GlotScript-T are available at //github.com/cisnlp/GlotScript.

We present MosaicFusion, a simple yet effective diffusion-based data augmentation approach for large vocabulary instance segmentation. Our method is training-free and does not rely on any label supervision. Two key designs enable us to employ an off-the-shelf text-to-image diffusion model as a useful dataset generator for object instances and mask annotations. First, we divide an image canvas into several regions and perform a single round of diffusion process to generate multiple instances simultaneously, conditioning on different text prompts. Second, we obtain corresponding instance masks by aggregating cross-attention maps associated with object prompts across layers and diffusion time steps, followed by simple thresholding and edge-aware refinement processing. Without bells and whistles, our MosaicFusion can produce a significant amount of synthetic labeled data for both rare and novel categories. Experimental results on the challenging LVIS long-tailed and open-vocabulary benchmarks demonstrate that MosaicFusion can significantly improve the performance of existing instance segmentation models, especially for rare and novel categories. Code will be released at //github.com/Jiahao000/MosaicFusion.

We propose a risk-aware crash mitigation system (RCMS), to augment any existing motion planner (MP), that enables an autonomous vehicle to perform evasive maneuvers in high-risk situations and minimize the severity of collision if a crash is inevitable. In order to facilitate a smooth transition between RCMS and MP, we develop a novel activation mechanism that combines instantaneous as well as predictive collision risk evaluation strategies in a unified hysteresis-band approach. For trajectory planning, we deploy a modular receding horizon optimization-based approach that minimizes a smooth situational risk profile, while adhering to the physical road limits as well as vehicular actuator limits. We demonstrate the performance of our approach in a simulation environment.

Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.

北京阿比特科技有限公司