This paper presents flood prediction models for the state of Kerala in India by analyzing the monthly rainfall data and applying machine learning algorithms including Logistic Regression, K-Nearest Neighbors, Decision Trees, Random Forests, and Support Vector Machine. Although these models have shown high accuracy prediction of the occurrence of flood in a particular year, they do not quantitatively and qualitatively explain the prediction decision. This paper shows how the background features are learned that contributed to the prediction decision and further extended to explain the inner workings with the development of explainable artificial intelligence modules. The obtained results have confirmed the validity of the findings uncovered by the explainer modules basing on the historical flood monthly rainfall data in Kerala.
Artificial intelligence (AI) and machine learning (ML) techniques have been increasingly used in several fields to improve performance and the level of automation. In recent years, this use has exponentially increased due to the advancement of high-performance computing and the ever increasing size of data. One of such fields is that of hardware design; specifically the design of digital and analog integrated circuits~(ICs), where AI/ ML techniques have been extensively used to address ever-increasing design complexity, aggressive time-to-market, and the growing number of ubiquitous interconnected devices (IoT). However, the security concerns and issues related to IC design have been highly overlooked. In this paper, we summarize the state-of-the-art in AL/ML for circuit design/optimization, security and engineering challenges, research in security-aware CAD/EDA, and future research directions and needs for using AI/ML for security-aware circuit design.
Artificial intelligence (AI) is gaining momentum, and its importance for the future of work in many areas, such as medicine and banking, is continuously rising. However, insights on the effective collaboration of humans and AI are still rare. Typically, AI supports humans in decision-making by addressing human limitations. However, it may also evoke human bias, especially in the form of automation bias as an over-reliance on AI advice. We aim to shed light on the potential to influence automation bias by explainable AI (XAI). In this pre-test, we derive a research model and describe our study design. Subsequentially, we conduct an online experiment with regard to hotel review classifications and discuss first results. We expect our research to contribute to the design and development of safe hybrid intelligence systems.
Fingerprint is an important biological feature of human body, which contains abundant gender information. At present, the academic research of fingerprint gender characteristics is generally at the level of understanding, while the standardization research is quite limited. In this work, we propose a more robust method, Dense Dilated Convolution ResNet (DDC-ResNet) to extract valid gender information from fingerprints. By replacing the normal convolution operations with the atrous convolution in the backbone, prior knowledge is provided to keep the edge details and the global reception field can be extended. We explored the results in 3 ways: 1) The efficiency of the DDC-ResNet. 6 typical methods of automatic feature extraction coupling with 9 mainstream classifiers are evaluated in our dataset with fair implementation details. Experimental results demonstrate that the combination of our approach outperforms other combinations in terms of average accuracy and separate-gender accuracy. It reaches 96.5% for average and 0.9752 (males)/0.9548 (females) for separate-gender accuracy. 2) The effect of fingers. It is found that the best performance of classifying gender with separate fingers is achieved by the right ring finger. 3) The effect of specific features. Based on the observations of the concentrations of fingerprints visualized by our approach, it can be inferred that loops and whorls (level 1), bifurcations (level 2), as well as line shapes (level 3) are connected with gender. Finally, we will open source the dataset that contains 6000 fingerprint images
Selecting the most suitable algorithm and determining its hyperparameters for a given optimization problem is a challenging task. Accurately predicting how well a certain algorithm could solve the problem is hence desirable. Recent studies in single-objective numerical optimization show that supervised machine learning methods can predict algorithm performance using landscape features extracted from the problem instances. Existing approaches typically treat the algorithms as black-boxes, without consideration of their characteristics. To investigate in this work if a selection of landscape features that depends on algorithms properties could further improve regression accuracy, we regard the modular CMA-ES framework and estimate how much each landscape feature contributes to the best algorithm performance regression models. Exploratory data analysis performed on this data indicate that the set of most relevant features does not depend on the configuration of individual modules, but the influence that these features have on regression accuracy does. In addition, we have shown that by using classifiers that take the features relevance on the model accuracy, we are able to predict the status of individual modules in the CMA-ES configurations.
This paper explores the relationship between artificial intelligence and principles of distributive justice. Drawing upon the political philosophy of John Rawls, it holds that the basic structure of society should be understood as a composite of socio-technical systems, and that the operation of these systems is increasingly shaped and influenced by AI. As a consequence, egalitarian norms of justice apply to the technology when it is deployed in these contexts. These norms entail that the relevant AI systems must meet a certain standard of public justification, support citizens rights, and promote substantively fair outcomes -- something that requires specific attention be paid to the impact they have on the worst-off members of society.
Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.
Predictions obtained by, e.g., artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or fifinance, is of paramount importance. The decision-making behind the black boxes requires it to be more transparent, accountable, and understandable for humans. This survey paper provides essential definitions, an overview of the different principles and methodologies of explainable Supervised Machine Learning (SML). We conduct a state-of-the-art survey that reviews past and recent explainable SML approaches and classifies them according to the introduced definitions. Finally, we illustrate principles by means of an explanatory case study and discuss important future directions.
Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.
In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.
Explainable Recommendation refers to the personalized recommendation algorithms that address the problem of why -- they not only provide the user with the recommendations, but also make the user aware why such items are recommended by generating recommendation explanations, which help to improve the effectiveness, efficiency, persuasiveness, and user satisfaction of recommender systems. In recent years, a large number of explainable recommendation approaches -- especially model-based explainable recommendation algorithms -- have been proposed and adopted in real-world systems. In this survey, we review the work on explainable recommendation that has been published in or before the year of 2018. We first high-light the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation itself in terms of three aspects: 1) We provide a chronological research line of explanations in recommender systems, including the user study approaches in the early years, as well as the more recent model-based approaches. 2) We provide a taxonomy for explainable recommendation algorithms, including user-based, item-based, model-based, and post-model explanations. 3) We summarize the application of explainable recommendation in different recommendation tasks, including product recommendation, social recommendation, POI recommendation, etc. We devote a chapter to discuss the explanation perspectives in the broader IR and machine learning settings, as well as their relationship with explainable recommendation research. We end the survey by discussing potential future research directions to promote the explainable recommendation research area.