亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study a finite volume scheme approximating a parabolic-elliptic Keller-Segel system with power law diffusion with exponent $\gamma \in [1,3]$ and periodic boundary conditions. We derive conditional a posteriori bounds for the error measured in the $L^\infty(0,T;H^1(\Omega))$ norm for the chemoattractant and by a quasi-norm-like quantity for the density. These results are based on stability estimates and suitable conforming reconstructions of the numerical solution. We perform numerical experiments showing that our error bounds are linear in mesh width and elucidating the behaviour of the error estimator under changes of $\gamma$.

相關內容

We study least-squares trace regression when the parameter is the sum of a $r$-low-rank and a $s$-sparse matrices and a fraction $\epsilon$ of the labels is corrupted. For subgaussian distributions, we highlight three design properties. The first, termed $\PP$, handles additive decomposition and follows from a product process inequality. The second, termed $\IP$, handles both label contamination and additive decomposition. It follows from Chevet's inequality. The third, termed $\MP$, handles the interaction between the design and featured-dependent noise. It follows from a multiplier process inequality. Jointly, these properties entail the near-optimality of a tractable estimator with respect to the effective dimensions $d_{\eff,r}$ and $d_{\eff,s}$ for the low-rank and sparse components, $\epsilon$ and the failure probability $\delta$. This rate has the form $$ \mathsf{r}(n,d_{\eff,r}) + \mathsf{r}(n,d_{\eff,s}) + \sqrt{(1+\log(1/\delta))/n} + \epsilon\log(1/\epsilon). $$ Here, $\mathsf{r}(n,d_{\eff,r})+\mathsf{r}(n,d_{\eff,s})$ is the optimal uncontaminated rate, independent of $\delta$. Our estimator is adaptive to $(s,r,\epsilon,\delta)$ and, for fixed absolute constant $c>0$, it attains the mentioned rate with probability $1-\delta$ uniformly over all $\delta\ge\exp(-cn)$. Disconsidering matrix decomposition, our analysis also entails optimal bounds for a robust estimator adapted to the noise variance. Finally, we consider robust matrix completion. We highlight a new property for this problem: one can robustly and optimally estimate the incomplete matrix regardless of the \emph{magnitude of the corruption}. Our estimators are based on ``sorted'' versions of Huber's loss. We present simulations matching the theory. In particular, it reveals the superiority of ``sorted'' Huber loss over the classical Huber's loss.

We construct and analyze finite element approximations of the Einstein tensor in dimension $N \ge 3$. We focus on the setting where a smooth Riemannian metric tensor $g$ on a polyhedral domain $\Omega \subset \mathbb{R}^N$ has been approximated by a piecewise polynomial metric $g_h$ on a simplicial triangulation $\mathcal{T}$ of $\Omega$ having maximum element diameter $h$. We assume that $g_h$ possesses single-valued tangential-tangential components on every codimension-1 simplex in $\mathcal{T}$. Such a metric is not classically differentiable in general, but it turns out that one can still attribute meaning to its Einstein curvature in a distributional sense. We study the convergence of the distributional Einstein curvature of $g_h$ to the Einstein curvature of $g$ under refinement of the triangulation. We show that in the $H^{-2}(\Omega)$-norm, this convergence takes place at a rate of $O(h^{r+1})$ when $g_h$ is an optimal-order interpolant of $g$ that is piecewise polynomial of degree $r \ge 1$. We provide numerical evidence to support this claim.

Contraction in Wasserstein 1-distance with explicit rates is established for generalized Hamiltonian Monte Carlo with stochastic gradients under possibly nonconvex conditions. The algorithms considered include splitting schemes of kinetic Langevin diffusion. As consequence, quantitative Gaussian concentration bounds are provided for empirical averages. Convergence in Wasserstein 2-distance, total variation and relative entropy are also given, together with numerical bias estimates.

Causal representation learning algorithms discover lower-dimensional representations of data that admit a decipherable interpretation of cause and effect; as achieving such interpretable representations is challenging, many causal learning algorithms utilize elements indicating prior information, such as (linear) structural causal models, interventional data, or weak supervision. Unfortunately, in exploratory causal representation learning, such elements and prior information may not be available or warranted. Alternatively, scientific datasets often have multiple modalities or physics-based constraints, and the use of such scientific, multimodal data has been shown to improve disentanglement in fully unsupervised settings. Consequently, we introduce a causal representation learning algorithm (causalPIMA) that can use multimodal data and known physics to discover important features with causal relationships. Our innovative algorithm utilizes a new differentiable parametrization to learn a directed acyclic graph (DAG) together with a latent space of a variational autoencoder in an end-to-end differentiable framework via a single, tractable evidence lower bound loss function. We place a Gaussian mixture prior on the latent space and identify each of the mixtures with an outcome of the DAG nodes; this novel identification enables feature discovery with causal relationships. Tested against a synthetic and a scientific dataset, our results demonstrate the capability of learning an interpretable causal structure while simultaneously discovering key features in a fully unsupervised setting.

We introduce a novel structure-preserving method in order to approximate the compressible ideal Magnetohydrodynamics (MHD) equations. This technique addresses the MHD equations using a non-divergence formulation, where the contributions of the magnetic field to the momentum and total mechanical energy are treated as source terms. Our approach uses the Marchuk-Strang splitting technique and involves three distinct components: a compressible Euler solver, a source-system solver, and an update procedure for the total mechanical energy. The scheme allows for significant freedom on the choice of Euler's equation solver, while the magnetic field is discretized using a curl-conforming finite element space, yielding exact preservation of the involution constraints. We prove that the method preserves invariant domain properties, including positivity of density, positivity of internal energy, and the minimum principle of the specific entropy. If the scheme used to solve Euler's equation conserves total energy, then the resulting MHD scheme can be proven to preserve total energy. Similarly, if the scheme used to solve Euler's equation is entropy-stable, then the resulting MHD scheme is entropy stable as well. In our approach, the CFL condition does not depend on magnetosonic wave-speeds, but only on the usual maximum wave speed from Euler's system. To validate the effectiveness of our method, we solve a variety of ideal MHD problems, showing that the method is capable of delivering high-order accuracy in space for smooth problems, while also offering unconditional robustness in the shock hydrodynamics regime as well.

This work presents a comparative study to numerically compute impulse approximate controls for parabolic equations with various boundary conditions. Theoretical controllability results have been recently investigated using a logarithmic convexity estimate at a single time based on a Carleman commutator approach. We propose a numerical algorithm for computing the impulse controls with minimal $L^2$-norms by adapting a penalized Hilbert Uniqueness Method (HUM) combined with a Conjugate Gradient (CG) method. We consider static boundary conditions (Dirichlet and Neumann) and dynamic boundary conditions. Some numerical experiments based on our developed algorithm are given to validate and compare the theoretical impulse controllability results.

The fundamental computational issues in Bayesian inverse problems (BIPs) governed by partial differential equations (PDEs) stem from the requirement of repeated forward model evaluations. A popular strategy to reduce such cost is to replace expensive model simulations by computationally efficient approximations using operator learning, motivated by recent progresses in deep learning. However, using the approximated model directly may introduce a modeling error, exacerbating the already ill-posedness of inverse problems. Thus, balancing between accuracy and efficiency is essential for the effective implementation of such approaches. To this end, we develop an adaptive operator learning framework that can reduce modeling error gradually by forcing the surrogate to be accurate in local areas. This is accomplished by fine-tuning the pre-trained approximate model during the inversion process with adaptive points selected by a greedy algorithm, which requires only a few forward model evaluations. To validate our approach, we adopt DeepOnet to construct the surrogate and use unscented Kalman inversion (UKI) to approximate the solution of BIPs, respectively. Furthermore, we present rigorous convergence guarantee in the linear case using the framework of UKI. We test the approach on several benchmarks, including the Darcy flow, the heat source inversion problem, and the reaction diffusion problems. Numerical results demonstrate that our method can significantly reduce computational costs while maintaining inversion accuracy.

We present a new high-order accurate spectral element solution to the two-dimensional scalar Poisson equation subject to a general Robin boundary condition. The solution is based on a simplified version of the shifted boundary method employing a continuous arbitrary order $hp$-Galerkin spectral element method as the numerical discretization procedure. The simplification relies on a polynomial correction to avoid explicitly evaluating high-order partial derivatives from the Taylor series expansion, which traditionally have been used within the shifted boundary method. In this setting, we apply an extrapolation and novel interpolation approach to project the basis functions from the true domain onto the approximate surrogate domain. The resulting solution provides a method that naturally incorporates curved geometrical features of the domain, overcomes complex and cumbersome mesh generation, and avoids problems with small-cut-cells. Dirichlet, Neumann, and general Robin boundary conditions are enforced weakly through: i) a generalized Nitsche's method and ii) a generalized Aubin's method. For this, a consistent asymptotic preserving formulation of the embedded Robin formulations is presented. We present several numerical experiments and analysis of the algorithmic properties of the different weak formulations. With this, we include convergence studies under polynomial, $p$, increase of the basis functions, mesh, $h$, refinement, and matrix conditioning to highlight the spectral and algebraic convergence features, respectively. This is done to assess the influence of errors across variational formulations, polynomial order, mesh size, and mappings between the true and surrogate boundaries.

Gaussian approximations are routinely employed in Bayesian statistics to ease inference when the target posterior is intractable. Although these approximations are asymptotically justified by Bernstein-von Mises type results, in practice the expected Gaussian behavior may poorly represent the shape of the posterior, thus affecting approximation accuracy. Motivated by these considerations, we derive an improved class of closed-form approximations of posterior distributions which arise from a new treatment of a third-order version of the Laplace method yielding approximations in a tractable family of skew-symmetric distributions. Under general assumptions which account for misspecified models and non-i.i.d. settings, this family of approximations is shown to have a total variation distance from the target posterior whose rate of convergence improves by at least one order of magnitude the one established by the classical Bernstein-von Mises theorem. Specializing this result to the case of regular parametric models shows that the same improvement in approximation accuracy can be also derived for polynomially bounded posterior functionals. Unlike other higher-order approximations, our results prove that it is possible to derive closed-form and valid densities which are expected to provide, in practice, a more accurate, yet similarly-tractable, alternative to Gaussian approximations of the target posterior, while inheriting its limiting frequentist properties. We strengthen such arguments by developing a practical skew-modal approximation for both joint and marginal posteriors that achieves the same theoretical guarantees of its theoretical counterpart by replacing the unknown model parameters with the corresponding MAP estimate. Empirical studies confirm that our theoretical results closely match the remarkable performance observed in practice, even in finite, possibly small, sample regimes.

We study parallel fault-tolerant quantum computing for families of homological quantum low-density parity-check (LDPC) codes defined on 3-manifolds with constant or almost-constant encoding rate. We derive generic formula for a transversal $T$ gate of color codes on general 3-manifolds, which acts as collective non-Clifford logical CCZ gates on any triplet of logical qubits with their logical-$X$ membranes having a $\mathbb{Z}_2$ triple intersection at a single point. The triple intersection number is a topological invariant, which also arises in the path integral of the emergent higher symmetry operator in a topological quantum field theory: the $\mathbb{Z}_2^3$ gauge theory. Moreover, the transversal $S$ gate of the color code corresponds to a higher-form symmetry supported on a codimension-1 submanifold, giving rise to exponentially many addressable and parallelizable logical CZ gates. We have developed a generic formalism to compute the triple intersection invariants for 3-manifolds and also study the scaling of the Betti number and systoles with volume for various 3-manifolds, which translates to the encoding rate and distance. We further develop three types of LDPC codes supporting such logical gates: (1) A quasi-hyperbolic code from the product of 2D hyperbolic surface and a circle, with almost-constant rate $k/n=O(1/\log(n))$ and $O(\log(n))$ distance; (2) A homological fibre bundle code with $O(1/\log^{\frac{1}{2}}(n))$ rate and $O(\log^{\frac{1}{2}}(n))$ distance; (3) A specific family of 3D hyperbolic codes: the Torelli mapping torus code, constructed from mapping tori of a pseudo-Anosov element in the Torelli subgroup, which has constant rate while the distance scaling is currently unknown. We then show a generic constant-overhead scheme for applying a parallelizable universal gate set with the aid of logical-$X$ measurements.

北京阿比特科技有限公司