亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop models to classify desirable reasoning revisions in argumentative writing. We explore two approaches -- multi-task learning and transfer learning -- to take advantage of auxiliary sources of revision data for similar tasks. Results of intrinsic and extrinsic evaluations show that both approaches can indeed improve classifier performance over baselines. While multi-task learning shows that training on different sources of data at the same time may improve performance, transfer-learning better represents the relationship between the data.

相關內容

We propose a framework for optimizing a planar parallel-jaw gripper for use with multiple objects. While optimizing general-purpose grippers and contact locations for grasps are both well studied, co-optimizing grasps and the gripper geometry to execute them receives less attention. As such, our framework synthesizes grippers optimized to stably grasp sets of polygonal objects. Given a fixed number of contacts and their assignments to object faces and gripper jaws, our framework optimizes contact locations along these faces, gripper pose for each grasp, and gripper shape. Our key insights are to pose shape and contact constraints in frames fixed to the gripper jaws, and to leverage the linearity of constraints in our grasp stability and gripper shape models via an augmented Lagrangian formulation. Together, these enable a tractable nonlinear program implementation. We apply our method to several examples. The first illustrative problem shows the discovery of a geometrically simple solution where possible. In another, space is constrained, forcing multiple objects to be contacted by the same features as each other. Finally a toolset-grasping example shows that our framework applies to complex, real-world objects. We provide a physical experiment of the toolset grasps.

In webpage fingerprinting, an on-path adversary infers the specific webpage loaded by a victim user by analysing the patterns in the encrypted TLS traffic exchanged between the user's browser and the website's servers. This work studies modern webpage fingerprinting adversaries against the TLS protocol; aiming to shed light on their capabilities and inform potential defences. Despite the importance of this research area (the majority of global Internet users rely on standard web browsing with TLS) and the potential real-life impact, most past works have focused on attacks specific to anonymity networks (e.g., Tor). We introduce a TLS-specific model that: 1) scales to an unprecedented number of target webpages, 2) can accurately classify thousands of classes it never encountered during training, and 3) has low operational costs even in scenarios of frequent page updates. Based on these findings, we then discuss TLS-specific countermeasures and evaluate the effectiveness of the existing padding capabilities provided by TLS 1.3.

Emotion recognition in text, the task of identifying emotions such as joy or anger, is a challenging problem in NLP with many applications. One of the challenges is the shortage of available datasets that have been annotated with emotions. Certain existing datasets are small, follow different emotion taxonomies and display imbalance in their emotion distribution. In this work, we studied the impact of data augmentation techniques precisely when applied to small imbalanced datasets, for which current state-of-the-art models (such as RoBERTa) under-perform. Specifically, we utilized four data augmentation methods (Easy Data Augmentation EDA, static and contextual Embedding-based, and ProtAugment) on three datasets that come from different sources and vary in size, emotion categories and distributions. Our experimental results show that using the augmented data when training the classifier model leads to significant improvements. Finally, we conducted two case studies: a) directly using the popular chat-GPT API to paraphrase text using different prompts, and b) using external data to augment the training set. Results show the promising potential of these methods.

Image-based Reinforcement Learning is a practical yet challenging task. A major hurdle lies in extracting control-centric representations while disregarding irrelevant information. While approaches that follow the bisimulation principle exhibit the potential in learning state representations to address this issue, they still grapple with the limited expressive capacity of latent dynamics and the inadaptability to sparse reward environments. To address these limitations, we introduce ReBis, which aims to capture control-centric information by integrating reward-free control information alongside reward-specific knowledge. ReBis utilizes a transformer architecture to implicitly model the dynamics and incorporates block-wise masking to eliminate spatiotemporal redundancy. Moreover, ReBis combines bisimulation-based loss with asymmetric reconstruction loss to prevent feature collapse in environments with sparse rewards. Empirical studies on two large benchmarks, including Atari games and DeepMind Control Suit, demonstrate that ReBis has superior performance compared to existing methods, proving its effectiveness.

Known simulations of random access machines (RAMs) or parallel RAMs (PRAMs) by Boolean circuits incur significant polynomial blowup, due to the need to repeatedly simulate accesses to a large main memory. Consider a single modification to Boolean circuits that removes the restriction that circuit graphs are acyclic. We call this the cyclic circuit model. Note, cyclic circuits remain combinational, as they do not allow wire values to change over time. We simulate PRAM with a cyclic circuit, and the blowup from our simulation is only polylogarithmic. Consider a PRAM program $P$ that on a length-$n$ input uses an arbitrary number of processors to manipulate words of size $\Theta(\log n)$ bits and then halts within $W(n)$ work. We construct a size-$O(W(n)\cdot \log^4 n)$ cyclic circuit that simulates $P$. Suppose that on a particular input, $P$ halts in time $T$; our circuit computes the same output within $T \cdot O(\log^3 n)$ gate delay. This implies theoretical feasibility of powerful parallel machines. Cyclic circuits can be implemented in hardware, and our circuit achieves performance within polylog factors of PRAM. Our simulated PRAM synchronizes processors via logical dependencies between wires.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司