亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments. It becomes increasingly crucial in the field of embodied AI, with potential applications in autonomous navigation, search and rescue, and human-robot interaction. In this paper, we propose to address a more practical yet challenging counterpart setting - vision-language navigation in continuous environments (VLN-CE). To develop a robust VLN-CE agent, we propose a new navigation framework, ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments. ETPNav performs online topological mapping of environments by self-organizing predicted waypoints along a traversed path, without prior environmental experience. It privileges the agent to break down the navigation procedure into high-level planning and low-level control. Concurrently, ETPNav utilizes a transformer-based cross-modal planner to generate navigation plans based on topological maps and instructions. The plan is then performed through an obstacle-avoiding controller that leverages a trial-and-error heuristic to prevent navigation from getting stuck in obstacles. Experimental results demonstrate the effectiveness of the proposed method. ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets, respectively. Our code is available at //github.com/MarSaKi/ETPNav.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

With the advancement of language models (LMs), their exposure to private data is increasingly inevitable, and their deployment (especially for smaller ones) on personal devices, such as PCs and smartphones, has become a prevailing trend. In contexts laden with user information, enabling models to both safeguard user privacy and execute commands efficiently emerges as an essential research imperative. In this paper, we propose CoGenesis, a collaborative generation framework integrating large (hosted on cloud infrastructure) and small models (deployed on local devices) to address privacy concerns logically. Initially, we design a pipeline to create personalized writing instruction datasets enriched with extensive context details as the testbed of this research issue. Subsequently, we introduce two variants of CoGenesis based on sketch and logits respectively. Our experimental findings, based on our synthesized dataset and two additional open-source datasets, indicate that: 1) Large-scale models perform well when provided with user context but struggle in the absence of such context. 2) While specialized smaller models fine-tuned on the synthetic dataset show promise, they still lag behind their larger counterparts. 3) Our CoGenesis framework, utilizing mixed-scale models, showcases competitive performance, providing a feasible solution to privacy issues.

The exploration of whether agents can align with their environment without relying on human-labeled data presents an intriguing research topic. Drawing inspiration from the alignment process observed in intelligent organisms, where declarative memory plays a pivotal role in summarizing past experiences, we propose a novel learning framework. The agents adeptly distill insights from past experiences, refining and updating existing notes to enhance their performance in the environment. This entire process transpires within the memory components and is implemented through natural language, so we character this framework as In-memory Learning. We also delve into the key features of benchmarks designed to evaluate the self-improvement process. Through systematic experiments, we demonstrate the effectiveness of our framework and provide insights into this problem.

Analogy-making is central to human cognition, allowing us to adapt to novel situations -- an ability that current AI systems still lack. Most analogy datasets today focus on simple analogies (e.g., word analogies); datasets including complex types of analogies are typically manually curated and very small. We believe that this holds back progress in computational analogy. In this work, we design a data generation pipeline, ParallelPARC (Parallel Paragraph Creator) leveraging state-of-the-art Large Language Models (LLMs) to create complex, paragraph-based analogies, as well as distractors, both simple and challenging. We demonstrate our pipeline and create ProPara-Logy, a dataset of analogies between scientific processes. We publish a gold-set, validated by humans, and a silver-set, generated automatically. We test LLMs' and humans' analogy recognition in binary and multiple-choice settings, and found that humans outperform the best models (~13% gap) after a light supervision. We demonstrate that our silver-set is useful for training models. Lastly, we show challenging distractors confuse LLMs, but not humans. We hope our pipeline will encourage research in this emerging field.

Pre-trained computational language models have recently made remarkable progress in harnessing the language abilities which were considered unique to humans. Their success has raised interest in whether these models represent and process language like humans. To answer this question, this paper proposes MulCogBench, a multi-modal cognitive benchmark dataset collected from native Chinese and English participants. It encompasses a variety of cognitive data, including subjective semantic ratings, eye-tracking, functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG). To assess the relationship between language models and cognitive data, we conducted a similarity-encoding analysis which decodes cognitive data based on its pattern similarity with textual embeddings. Results show that language models share significant similarities with human cognitive data and the similarity patterns are modulated by the data modality and stimuli complexity. Specifically, context-aware models outperform context-independent models as language stimulus complexity increases. The shallow layers of context-aware models are better aligned with the high-temporal-resolution MEG signals whereas the deeper layers show more similarity with the high-spatial-resolution fMRI. These results indicate that language models have a delicate relationship with brain language representations. Moreover, the results between Chinese and English are highly consistent, suggesting the generalizability of these findings across languages.

The rapid developments of mobile robotics and autonomous navigation over the years are largely empowered by public datasets for testing and upgrading, such as sensor odometry and SLAM tasks. Impressive demos and benchmark scores have arisen, which may suggest the maturity of existing navigation techniques. However, these results are primarily based on moderate structured scenario testing. When transitioning to challenging unstructured environments, especially in GNSS-denied, texture-monotonous, and dense-vegetated natural fields, their performance can hardly sustain at a high level and requires further validation and improvement. To bridge this gap, we build a novel robot navigation dataset in a luxuriant botanic garden of more than 48000m2. Comprehensive sensors are used, including Gray and RGB stereo cameras, spinning and MEMS 3D LiDARs, and low-cost and industrial-grade IMUs, all of which are well calibrated and hardware-synchronized. An all-terrain wheeled robot is employed for data collection, traversing through thick woods, riversides, narrow trails, bridges, and grasslands, which are scarce in previous resources. This yields 33 short and long sequences, forming 17.1km trajectories in total. Excitedly, both highly-accurate ego-motions and 3D map ground truth are provided, along with fine-annotated vision semantics. We firmly believe that our dataset can advance robot navigation and sensor fusion research to a higher level.

Large Language Models (LLMs) have revolutionized open-domain dialogue agents but encounter challenges in multi-character role-playing (MCRP) scenarios. To address the issue, we present Neeko, an innovative framework designed for efficient multiple characters imitation. Unlike existing methods, Neeko employs a dynamic low-rank adapter (LoRA) strategy, enabling it to adapt seamlessly to diverse characters. Our framework breaks down the role-playing process into agent pre-training, multiple characters playing, and character incremental learning, effectively handling both seen and unseen roles. This dynamic approach, coupled with distinct LoRA blocks for each character, enhances Neeko's adaptability to unique attributes, personalities, and speaking patterns. As a result, Neeko demonstrates superior performance in MCRP over most existing methods, offering more engaging and versatile user interaction experiences. Code and data are available at //github.com/weiyifan1023/Neeko.

Pre-trained Large Language Models (LLMs) have significantly advanced natural language processing capabilities but are susceptible to biases present in their training data, leading to unfair outcomes in various applications. While numerous strategies have been proposed to mitigate bias, they often require extensive computational resources and may compromise model performance. In this work, we introduce AXOLOTL, a novel post-processing framework, which operates agnostically across tasks and models, leveraging public APIs to interact with LLMs without direct access to internal parameters. Through a three-step process resembling zero-shot learning, AXOLOTL identifies biases, proposes resolutions, and guides the model to self-debias its outputs. This approach minimizes computational costs and preserves model performance, making AXOLOTL a promising tool for debiasing LLM outputs with broad applicability and ease of use.

The growing integration of large language models (LLMs) into social operations amplifies their impact on decisions in crucial areas such as economics, law, education, and healthcare, raising public concerns about these models' discrimination-related safety and reliability. However, prior discrimination measuring frameworks solely assess the average discriminatory behavior of LLMs, often proving inadequate due to the overlook of an additional discrimination-leading factor, i.e., the LLMs' prediction variation across diverse contexts. In this work, we present the Prejudice-Caprice Framework (PCF) that comprehensively measures discrimination in LLMs by considering both their consistently biased preference and preference variation across diverse contexts. Specifically, we mathematically dissect the aggregated contextualized discrimination risk of LLMs into prejudice risk, originating from LLMs' persistent prejudice, and caprice risk, stemming from their generation inconsistency. In addition, we utilize a data-mining approach to gather preference-detecting probes from sentence skeletons, devoid of attribute indications, to approximate LLMs' applied contexts. While initially intended for assessing discrimination in LLMs, our proposed PCF facilitates the comprehensive and flexible measurement of any inductive biases, including knowledge alongside prejudice, across various modality models. We apply our discrimination-measuring framework to 12 common LLMs, yielding intriguing findings: i) modern LLMs demonstrate significant pro-male stereotypes, ii) LLMs' exhibited discrimination correlates with several social and economic factors, iii) prejudice risk dominates the overall discrimination risk and follows a normal distribution, and iv) caprice risk contributes minimally to the overall risk but follows a fat-tailed distribution, suggesting that it is wild risk requiring enhanced surveillance.

User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司