FeltingReel is a soft fabrication system that allows users to create a 3D non-woven textile with various structural strengths. Our system coils wool yarn onto a central reel to form a basic shape and uses actuated barbed needles to refine it. By controlling the coiling tension and the felting times, our system varies the density of the workpiece in a target area to achieve various structural strengths. Specifically, our system controls the tilt of coiling and felting using a Stewart platform around a motorized rotating reel. Our system also allows different basic shapes with hollow internal structures to be formed by changing the detachable reel core. We investigate the effects of different felting needles, frequencies, and coiling directions that influence the density, structural strength, and fabrication time of a workpiece. We propose three methods to combine felting and reeling. We evaluate their performances and final products by producing two example workpieces using our system. We demonstrate several objects made by our working system and discuss its capabilities and limitations.
Ranking items regarding individual user interests is a core technique of multiple downstream tasks such as recommender systems. Learning such a personalized ranker typically relies on the implicit feedback from users' past click-through behaviors. However, collected feedback is biased toward previously highly-ranked items and directly learning from it would result in a "rich-get-richer" phenomenon. In this paper, we propose a simple yet sufficient unbiased learning-to-rank paradigm named InfoRank that aims to simultaneously address both position and popularity biases. We begin by consolidating the impacts of those biases into a single observation factor, thereby providing a unified approach to addressing bias-related issues. Subsequently, we minimize the mutual information between the observation estimation and the relevance estimation conditioned on the input features. By doing so, our relevance estimation can be proved to be free of bias. To implement InfoRank, we first incorporate an attention mechanism to capture latent correlations within user-item features, thereby generating estimations of observation and relevance. We then introduce a regularization term, grounded in conditional mutual information, to promote conditional independence between relevance estimation and observation estimation. Experimental evaluations conducted across three extensive recommendation and search datasets reveal that InfoRank learns more precise and unbiased ranking strategies.
Truthfulness is paramount for large language models (LLMs) as they are increasingly deployed in real-world applications. However, existing LLMs still struggle with generating truthful answers and content, as evidenced by their modest performance on benchmarks like TruthfulQA. To address this issue, we propose GRAdual self-truTHifying (GRATH), a novel post-processing method to enhance truthfulness of LLMs. GRATH utilizes out-of-domain question prompts to generate corresponding answers and adaptively optimizes the model via direct preference optimization (DPO). Note that during this process, GRATH learns truthfulness in a self-supervised manner without requiring annotated answers. In particular, GRATH first generates pairwise truthfulness training data by prompting the LLM itself, with each pair containing a question and its correct and incorrect answers. The model is then fine-tuned using DPO to learn from the difference between answer pairs. Subsequently, GRATH iteratively refines the truthfulness data and optimizes the model, leading to a gradual improvement in model truthfulness. Empirically, we evaluate GRATH using different 7B-LLMs and compare with LLMs with similar or even larger sizes on benchmark datasets. Our results show that GRATH effectively improves LLMs' truthfulness without compromising other core capabilities. Notably, GRATH achieves state-of-the-art performance on TruthfulQA, with MC1 accuracy as 54.71% and MC2 accuracy as 69.10%, which even surpass those on larger-scale models, such as Llama2-Chat-70B, by 23.62% and 24.18%, respectively.
Comments within source code are essential for developers to comprehend the code's purpose and ensure its correct usage. However, as codebases evolve, maintaining an accurate alignment between the comments and the code becomes increasingly challenging. Recognizing the growing interest in automated solutions for detecting and correcting differences between code and its accompanying comments, current methods rely primarily on heuristic rules. In contrast, this paper presents DocChecker, a tool powered by deep learning. DocChecker is adept at identifying inconsistencies between code and comments, and it can also generate synthetic comments. This capability enables the tool to detect and correct instances where comments do not accurately reflect their corresponding code segments. We demonstrate the effectiveness of DocChecker using the Just-In-Time and CodeSearchNet datasets, benchmarking its performance against other leading methods and Large Language Models (LLMs). DocChecker is accessible for use and evaluation. It can be found on our Github //github.com/FSoft-AI4Code/DocChecker and as an Online Tool //4.193.50.237:5000/. For a more comprehensive understanding of its functionality, a demonstration video is available on YouTube //youtu.be/FqnPmd531xw.
Recently, Federated Graph Learning (FGL) has attracted significant attention as a distributed framework based on graph neural networks, primarily due to its capability to break data silos. Existing FGL studies employ community split on the homophilous global graph by default to simulate federated semi-supervised node classification settings. Such a strategy assumes the consistency of topology between the multi-client subgraphs and the global graph, where connected nodes are highly likely to possess similar feature distributions and the same label. However, in real-world implementations, the varying perspectives of local data engineering result in various subgraph topologies, posing unique heterogeneity challenges in FGL. Unlike the well-known label Non-independent identical distribution (Non-iid) problems in federated learning, FGL heterogeneity essentially reveals the topological divergence among multiple clients, namely homophily or heterophily. To simulate and handle this unique challenge, we introduce the concept of structure Non-iid split and then present a new paradigm called \underline{Ada}ptive \underline{F}ederated \underline{G}raph \underline{L}earning (AdaFGL), a decoupled two-step personalized approach. To begin with, AdaFGL employs standard multi-client federated collaborative training to acquire the federated knowledge extractor by aggregating uploaded models in the final round at the server. Then, each client conducts personalized training based on the local subgraph and the federated knowledge extractor. Extensive experiments on the 12 graph benchmark datasets validate the superior performance of AdaFGL over state-of-the-art baselines. Specifically, in terms of test accuracy, our proposed AdaFGL outperforms baselines by significant margins of 3.24\% and 5.57\% on community split and structure Non-iid split, respectively.
Open-sourced large language models (LLMs) have demonstrated remarkable efficacy in various tasks with instruction tuning. However, these models can sometimes struggle with tasks that require more specialized knowledge such as translation. One possible reason for such deficiency is that instruction tuning aims to generate fluent and coherent text that continues from a given instruction without being constrained by any task-specific requirements. Moreover, it can be more challenging for tuning smaller LLMs with lower-quality training data. To address this issue, we propose a novel framework using examples in comparison to teach LLMs to learn translation. Our approach involves presenting the model with examples of correct and incorrect translations and using a preference loss to guide the model's learning. We evaluate our method on WMT2022 test sets and show that it outperforms existing methods. Our findings offer a new perspective on fine-tuning LLMs for translation tasks and provide a promising solution for generating high-quality translations. Please refer to Github for more details: //github.com/lemon0830/TIM.
Timely, personalized feedback is essential for students learning programming, especially as class sizes expand. LLM-based tools like ChatGPT offer instant support, but reveal direct answers with code, which may hinder deep conceptual engagement. We developed CodeAid, an LLM-based programming assistant delivering helpful, technically correct responses, without revealing code solutions. For example, CodeAid can answer conceptual questions, generate pseudo-code with line-by-line explanations, and annotate student's incorrect code with fix suggestions. We deployed CodeAid in a programming class of 700 students for a 12-week semester. A thematic analysis of 8,000 usages of CodeAid was performed, further enriched by weekly surveys, and 22 student interviews. We then interviewed eight programming educators to gain further insights on CodeAid. Findings revealed students primarily used CodeAid for conceptual understanding and debugging, although a minority tried to obtain direct code. Educators appreciated CodeAid's educational approach, and expressed concerns about occasional incorrect feedback and students defaulting to ChatGPT.
Sound event localization and detection (SELD) is an important task in machine listening. Major advancements rely on simulated data with sound events in specific rooms and strong spatio-temporal labels. SELD data is simulated by convolving spatialy-localized room impulse responses (RIRs) with sound waveforms to place sound events in a soundscape. However, RIRs require manual collection in specific rooms. We present SpatialScaper, a library for SELD data simulation and augmentation. Compared to existing tools, SpatialScaper emulates virtual rooms via parameters such as size and wall absorption. This allows for parameterized placement (including movement) of foreground and background sound sources. SpatialScaper also includes data augmentation pipelines that can be applied to existing SELD data. As a case study, we use SpatialScaper to add rooms to the DCASE SELD data. Training a model with our data led to progressive performance improves as a direct function of acoustic diversity. These results show that SpatialScaper is valuable to train robust SELD models.
Users often rely on GUIs to edit and interact with visualizations - a daunting task due to the large space of editing options. As a result, users are either overwhelmed by a complex UI or constrained by a custom UI with a tailored, fixed subset of options with limited editing flexibility. Natural Language Interfaces (NLIs) are emerging as a feasible alternative for users to specify edits. However, NLIs forgo the advantages of traditional GUI: the ability to explore and repeat edits and see instant visual feedback. We introduce DynaVis, which blends natural language and dynamically synthesized UI widgets. As the user describes an editing task in natural language, DynaVis performs the edit and synthesizes a persistent widget that the user can interact with to make further modifications. Study participants (n=24) preferred DynaVis over the NLI-only interface citing ease of further edits and editing confidence due to immediate visual feedback.
Dictation enables efficient text input on mobile devices. However, writing with speech can produce disfluent, wordy, and incoherent text and thus requires heavy post-processing. This paper presents Rambler, an LLM-powered graphical user interface that supports gist-level manipulation of dictated text with two main sets of functions: gist extraction and macro revision. Gist extraction generates keywords and summaries as anchors to support the review and interaction with spoken text. LLM-assisted macro revisions allow users to respeak, split, merge and transform dictated text without specifying precise editing locations. Together they pave the way for interactive dictation and revision that help close gaps between spontaneous spoken words and well-structured writing. In a comparative study with 12 participants performing verbal composition tasks, Rambler outperformed the baseline of a speech-to-text editor + ChatGPT, as it better facilitates iterative revisions with enhanced user control over the content while supporting surprisingly diverse user strategies.
DataViz3D is an innovative online software that transforms complex datasets into interactive 3D spatial models using holographic technology. This tool enables users to generate scatter plot within a 3D space, accurately mapped to the XYZ coordinates of the dataset, providing a vivid and intuitive understanding of the spatial relationships inherent in the data. DataViz3D's user friendly interface makes advanced 3D modeling and holographic visualization accessible to a wide range of users, fostering new opportunities for collaborative research and education across various disciplines.