Instruct LLM provide a paradigm used in large scale language model to align LLM to human preference. The paradigm contains supervised fine tuning and reinforce learning from human feedback. This paradigm is also used in downstream scenarios to adapt LLM to specific corpora and applications. Comparing to SFT, there are many efforts focused on RLHF and several algorithms being proposed, such as PPO, DPO, IPO, KTO, MinorDPO and etc. Meanwhile most efforts for SFT are focused on how to collect, filter and mix high quality data. In this article with insight from DPO and MinorDPO, we propose a training metric for SFT to measure the discrepancy between the optimized model and the original model, and a loss function MinorSFT that can increase the training effectiveness, and reduce the discrepancy between the optimized LLM and original LLM.
Recently, retrieval-based language models (RLMs) have received much attention. However, most of them leverage a pre-trained retriever with fixed parameters, which may not adapt well to causal language models. In this work, we propose Grouped Cross-Attention, a novel module enabling joint pre-training of the retriever and causal LM, and apply it to long-context modeling. For a given input sequence, we split it into chunks and use the current chunk to retrieve past chunks for subsequent text generation. Our innovation allows the retriever to learn how to retrieve past chunks that better minimize the auto-regressive loss of subsequent tokens in an end-to-end manner. By integrating top-$k$ retrieval, our model can be pre-trained efficiently from scratch with context lengths up to 64K tokens. Our experiments show our model, compared with long-range LM baselines, can achieve lower perplexity with comparable or lower pre-training and inference costs.
We introduce GPTreeO, a flexible R package for scalable Gaussian process (GP) regression, particularly tailored to continual learning problems. GPTreeO builds upon the Dividing Local Gaussian Processes (DLGP) algorithm, in which a binary tree of local GP regressors is dynamically constructed using a continual stream of input data. In GPTreeO we extend the original DLGP algorithm by allowing continual optimisation of the GP hyperparameters, incorporating uncertainty calibration, and introducing new strategies for how the local partitions are created. Moreover, the modular code structure allows users to interface their favourite GP library to perform the local GP regression in GPTreeO. The flexibility of GPTreeO gives the user fine-grained control of the balance between computational speed, accuracy, stability and smoothness. We conduct a sensitivity analysis to show how GPTreeO's configurable features impact the regression performance in a continual learning setting.
This paper presents a control variate-based Markov chain Monte Carlo algorithm for efficient sampling from the probability simplex, with a focus on applications in large-scale Bayesian models such as latent Dirichlet allocation. Standard Markov chain Monte Carlo methods, particularly those based on Langevin diffusions, suffer from significant discretization errors near the boundaries of the simplex, which are exacerbated in sparse data settings. To address this issue, we propose an improved approach based on the stochastic Cox--Ingersoll--Ross process, which eliminates discretization errors and enables exact transition densities. Our key contribution is the integration of control variates, which significantly reduces the variance of the stochastic gradient estimator in the Cox--Ingersoll--Ross process, thereby enhancing the accuracy and computational efficiency of the algorithm. We provide a theoretical analysis showing the variance reduction achieved by the control variates approach and demonstrate the practical advantages of our method in data subsampling settings. Empirical results on large datasets show that the proposed method outperforms existing approaches in both accuracy and scalability.
In this paper, a high-order/low-order (HOLO) method is combined with a micro-macro (MM) decomposition to accelerate iterative solvers in fully implicit time-stepping of the BGK equation for gas dynamics. The MM formulation represents a kinetic distribution as the sum of a local Maxwellian and a perturbation. In highly collisional regimes, the perturbation away from initial and boundary layers is small and can be compressed to reduce the overall storage cost of the distribution. The convergence behavior of the MM methods, the usual HOLO method, and the standard source iteration method is analyzed on a linear BGK model. Both the HOLO and MM methods are implemented using a discontinuous Galerkin (DG) discretization in phase space, which naturally preserves the consistency between high- and low-order models required by the HOLO approach. The accuracy and performance of these methods are compared on the Sod shock tube problem and a sudden wall heating boundary layer problem. Overall, the results demonstrate the robustness of the MM and HOLO approaches and illustrate the compression benefits enabled by the MM formulation when the kinetic distribution is near equilibrium.
Large language models (LLMs) have demonstrated prominent reasoning capabilities in recommendation tasks by transforming them into text-generation tasks. % many NLP applications including However, existing approaches either disregard or ineffectively model the user--item high-order interactions. To this end, this paper presents an enhanced LLM-based recommender (ELMRec). We enhance whole-word embeddings to substantially enhance LLMs' interpretation of graph-constructed interactions for recommendations, without requiring graph pre-training. This finding may inspire endeavors to incorporate rich knowledge graphs into LLM-based recommenders via whole-word embedding. We also found that LLMs often recommend items based on users' earlier interactions rather than recent ones, and present a reranking solution. Our ELMRec outperforms state-of-the-art (SOTA) methods in both direct and sequential recommendations.
Diffusion models have demonstrated their capabilities in modeling trajectories of multi-tasks. However, existing multi-task planners or policies typically rely on task-specific demonstrations via multi-task imitation, or require task-specific reward labels to facilitate policy optimization via Reinforcement Learning (RL). To address these challenges, we aim to develop a versatile diffusion planner that can leverage large-scale inferior data that contains task-agnostic sub-optimal trajectories, with the ability to fast adapt to specific tasks. In this paper, we propose \textbf{SODP}, a two-stage framework that leverages \textbf{S}ub-\textbf{O}ptimal data to learn a \textbf{D}iffusion \textbf{P}lanner, which is generalizable for various downstream tasks. Specifically, in the pre-training stage, we train a foundation diffusion planner that extracts general planning capabilities by modeling the versatile distribution of multi-task trajectories, which can be sub-optimal and has wide data coverage. Then for downstream tasks, we adopt RL-based fine-tuning with task-specific rewards to fast refine the diffusion planner, which aims to generate action sequences with higher task-specific returns. Experimental results from multi-task domains including Meta-World and Adroit demonstrate that SODP outperforms state-of-the-art methods with only a small amount of data for reward-guided fine-tuning.
Low latency models are critical for real-time speech enhancement applications, such as hearing aids and hearables. However, the sub-millisecond latency space for resource-constrained hearables remains underexplored. We demonstrate speech enhancement using a computationally efficient minimum-phase FIR filter, enabling sample-by-sample processing to achieve mean algorithmic latency of 0.32 ms to 1.25 ms. With a single microphone, we observe a mean SI-SDRi of 4.1 dB. The approach shows generalization with a DNSMOS increase of 0.2 on unseen audio recordings. We use a lightweight LSTM-based model of 644k parameters to generate FIR taps. We benchmark that our system can run on low-power DSP with 388 MIPS and mean end-to-end latency of 3.35 ms. We provide a comparison with baseline low-latency spectral masking techniques. We hope this work will enable a better understanding of latency and can be used to improve the comfort and usability of hearables.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.