In a recent breakthrough [BGM23, GZ23, AGL23], it was shown that randomly punctured Reed-Solomon codes are list decodable with optimal list size with high probability, i.e., they attain the Singleton bound for list decoding [ST20, Rot22, GST22]. We extend this result to the family of polynomial ideal codes, a large class of error-correcting codes which includes several well-studied families of codes such as Reed-Solomon, folded Reed-Solomon, and multiplicity codes. More specifically, similarly to the Reed-Solomon setting, we show that randomly punctured polynomial ideal codes over an exponentially large alphabet exactly achieve the Singleton bound for list-decoding; while such codes over a polynomially large alphabet approximately achieve it. Combining our results with the efficient list-decoding algorithm for a large subclass of polynomial ideal codes of [BHKS21], implies as a corollary that a large subclass of polynomial ideal codes (over random evaluation points) is efficiently list decodable with optimal list size. To the best of our knowledge, this gives the first family of codes that can be efficiently list decoded with optimal list size (for all list sizes), as well as the first family of linear codes of rate $R$ that can be efficiently list decoded up to a radius of $1 -R-\epsilon$ with list size that is polynomial (and even linear) in $1/\epsilon$. Our result applies to natural families of codes with algebraic structure such as folded Reed-Solomon or multiplicity codes (over random evaluation points). Our proof follows the general framework of [BGM23, GZ23, AGL23], but several new ingredients are needed. The main two new ingredients are a polynomial-ideal GM-MDS theorem (extending the algebraic GM-MDS theorem of [YH19, Lov21]), as well as a duality theorem for polynomial ideal codes, both of which may be of independent interest.
Recent advancements in Large Language Models (LLMs), particularly those built on Transformer architectures, have significantly broadened the scope of natural language processing (NLP) applications, transcending their initial use in chatbot technology. This paper investigates the multifaceted applications of these models, with an emphasis on the GPT series. This exploration focuses on the transformative impact of artificial intelligence (AI) driven tools in revolutionizing traditional tasks like coding and problem-solving, while also paving new paths in research and development across diverse industries. From code interpretation and image captioning to facilitating the construction of interactive systems and advancing computational domains, Transformer models exemplify a synergy of deep learning, data analysis, and neural network design. This survey provides an in-depth look at the latest research in Transformer models, highlighting their versatility and the potential they hold for transforming diverse application sectors, thereby offering readers a comprehensive understanding of the current and future landscape of Transformer-based LLMs in practical applications.
Track reconstruction is a vital aspect of High-Energy Physics (HEP) and plays a critical role in major experiments. In this study, we delve into unexplored avenues for particle track reconstruction and hit clustering. Firstly, we enhance the algorithmic design effort by utilising a simplified simulator (REDVID) to generate training data that is specifically composed for simplicity. We demonstrate the effectiveness of this data in guiding the development of optimal network architectures. Additionally, we investigate the application of image segmentation networks for this task, exploring their potential for accurate track reconstruction. Moreover, we approach the task from a different perspective by treating it as a hit sequence to track sequence translation problem. Specifically, we explore the utilisation of Transformer architectures for tracking purposes. Our preliminary findings are covered in detail. By considering this novel approach, we aim to uncover new insights and potential advancements in track reconstruction. This research sheds light on previously unexplored methods and provides valuable insights for the field of particle track reconstruction and hit clustering in HEP.
As the number of Persons with Disabilities (PWD), particularly those with one or more physical impairments, increases, there is an increasing demand for assistive robotic technologies that can support independent mobility in the built environment and reduce the burden on caregivers. Current assistive mobility platforms (e.g., robotic wheelchairs) often fail to incorporate user preferences and control, leading to reduced trust and efficiency. Existing shared control algorithms do not allow the incorporation of the user control preferences inside the navigation framework or the path planning algorithm. In addition, existing dynamic local planner algorithms for robotic wheelchairs do not take into account the social spaces of people, potentially leading such platforms to infringe upon these areas and cause discomfort. To address these concerns, this work introduces a novel socially-aware shared autonomy-based navigation system for assistive mobile robotic platforms. Our navigation framework comprises a Global Planner and a Local Planner. To implement the Global Planner, the proposed approach introduces a novel User Preference Field (UPF) theory within its global planning framework, explicitly acknowledging user preferences to adeptly navigate away from congested areas. For the Local Planner, we propose a Socially-aware Shared Control-based Model Predictive Control with Dynamic Control Barrier Function (SS-MPC-DCBF) to adjust movements in real-time, integrating user preferences for safer, more autonomous navigation. Evaluation results show that our Global Planner aligns closely with user preferences compared to baselines, and our Local Planner demonstrates enhanced safety and efficiency in dynamic and static scenarios. This integrated approach fosters trust and autonomy, crucial for the acceptance of assistive mobility technologies in the built environment.
Despite significant strides in multimodal tasks, Multimodal Large Language Models (MLLMs) are plagued by the critical issue of hallucination. The reliable detection of such hallucinations in MLLMs has, therefore, become a vital aspect of model evaluation and the safeguarding of practical application deployment. Prior research in this domain has been constrained by a narrow focus on singular tasks, an inadequate range of hallucination categories addressed, and a lack of detailed granularity. In response to these challenges, our work expands the investigative horizons of hallucination detection. We present a novel meta-evaluation benchmark, MHaluBench, meticulously crafted to facilitate the evaluation of advancements in hallucination detection methods. Additionally, we unveil a novel unified multimodal hallucination detection framework, UNIHD, which leverages a suite of auxiliary tools to validate the occurrence of hallucinations robustly. We demonstrate the effectiveness of UNIHD through meticulous evaluation and comprehensive analysis. We also provide strategic insights on the application of specific tools for addressing various categories of hallucinations.
Large-language Models (LLMs) need to adopt Retrieval-Augmented Generation (RAG) to generate factual responses that are better suited to knowledge-based applications in the design process. We present a data-driven method to identify explicit facts of the form - head entity :: relationship :: tail entity from patented artefact descriptions. We train roBERTa Transformer-based sequence classification models using our proprietary dataset of 44,227 sentences. Upon classifying tokens in a sentence as entities or relationships, our method uses another classifier to identify specific relationship tokens for a given pair of entities. We compare the performances against linear classifiers and Graph Neural Networks (GNNs) that both incorporate BERT Transformer-based token embeddings to predict associations among the entities and relationships. We apply our method to 4,870 fan system related patents and populate a knowledge base that constitutes around 3 million facts. Using the knowledge base, we demonstrate retrieving generalisable and specific domain knowledge for contextualising LLMs.
A ladder lottery, known as ``Amidakuji'' in Japan, is a common way to decide an assignment at random. In this paper, we investigate reconfiguration and enumeration problems of cyclic ladder lotteries. First, when a permutation $\pi$ and an optimal displacement vector $\bm{x}$ are given, we investigate the reconfiguration and enumeration problems of the ``optimal'' cyclic ladder lotteries of $\pi$ and $\bm{x}$. Next, for a give permutation $\pi$ we consider reconfiguration and enumeration problems of the optimal displacement vectors of $\pi$.
With the widespread proliferation of AI systems, trust in AI is an important and timely topic to navigate. Researchers so far have largely employed a myopic view of this relationship. In particular, a limited number of relevant trustors (e.g., end-users) and trustees (i.e., AI systems) have been considered, and empirical explorations have remained in laboratory settings, potentially overlooking factors that impact human-AI relationships in the real world. In this paper, we argue for broadening the scope of studies addressing `trust in AI' by accounting for the complex and dynamic supply chains that AI systems result from. AI supply chains entail various technical artifacts that diverse individuals, organizations, and stakeholders interact with, in a variety of ways. We present insights from an in-situ, empirical study of LLM supply chains. Our work reveals additional types of trustors and trustees and new factors impacting their trust relationships. These relationships were found to be central to the development and adoption of LLMs, but they can also be the terrain for uncalibrated trust and reliance on untrustworthy LLMs. Based on these findings, we discuss the implications for research on `trust in AI'. We highlight new research opportunities and challenges concerning the appropriate study of inter-actor relationships across the supply chain and the development of calibrated trust and meaningful reliance behaviors. We also question the meaning of building trust in the LLM supply chain.
The rapid advancements in Large Language Models (LLMs) have revolutionized natural language processing, with GPTs, customized versions of ChatGPT available on the GPT Store, emerging as a prominent technology for specific domains and tasks. To support academic research on GPTs, we introduce GPTZoo, a large-scale dataset comprising 730,420 GPT instances. Each instance includes rich metadata with 21 attributes describing its characteristics, as well as instructions, knowledge files, and third-party services utilized during its development. GPTZoo aims to provide researchers with a comprehensive and readily available resource to study the real-world applications, performance, and potential of GPTs. To facilitate efficient retrieval and analysis of GPTs, we also developed an automated command-line interface (CLI) that supports keyword-based searching of the dataset. To promote open research and innovation, the GPTZoo dataset will undergo continuous updates, and we are granting researchers public access to GPTZoo and its associated tools.
The success of current Large-Language Models (LLMs) hinges on extensive training data that is collected and stored centrally, called Centralized Learning (CL). However, such a collection manner poses a privacy threat, and one potential solution is Federated Learning (FL), which transfers gradients, not raw data, among clients. Unlike traditional networks, FL for LLMs incurs significant communication costs due to their tremendous parameters. This study introduces an innovative approach to compress gradients to improve communication efficiency during LLM FL, formulating the new FL pipeline named CG-FedLLM. This approach integrates an encoder on the client side to acquire the compressed gradient features and a decoder on the server side to reconstruct the gradients. We also developed a novel training strategy that comprises Temporal-ensemble Gradient-Aware Pre-training (TGAP) to identify characteristic gradients of the target model and Federated AutoEncoder-Involved Fine-tuning (FAF) to compress gradients adaptively. Extensive experiments confirm that our approach reduces communication costs and improves performance (e.g., average 3 points increment compared with traditional CL- and FL-based fine-tuning with LlaMA on a well-recognized benchmark, C-Eval). This improvement is because our encoder-decoder, trained via TGAP and FAF, can filter gradients while selectively preserving critical features. Furthermore, we present a series of experimental analyses focusing on the signal-to-noise ratio, compression rate, and robustness within this privacy-centric framework, providing insight into developing more efficient and secure LLMs.
Graph Neural Networks (GNNs) are state-of-the-art models for performing prediction tasks on graphs. While existing GNNs have shown great performance on various tasks related to graphs, little attention has been paid to the scenario where out-of-distribution (OOD) nodes exist in the graph during training and inference. Borrowing the concept from CV and NLP, we define OOD nodes as nodes with labels unseen from the training set. Since a lot of networks are automatically constructed by programs, real-world graphs are often noisy and may contain nodes from unknown distributions. In this work, we define the problem of graph learning with out-of-distribution nodes. Specifically, we aim to accomplish two tasks: 1) detect nodes which do not belong to the known distribution and 2) classify the remaining nodes to be one of the known classes. We demonstrate that the connection patterns in graphs are informative for outlier detection, and propose Out-of-Distribution Graph Attention Network (OODGAT), a novel GNN model which explicitly models the interaction between different kinds of nodes and separate inliers from outliers during feature propagation. Extensive experiments show that OODGAT outperforms existing outlier detection methods by a large margin, while being better or comparable in terms of in-distribution classification.