Visual grounding (VG) aims to establish fine-grained alignment between vision and language. Ideally, it can be a testbed for vision-and-language models to evaluate their understanding of the images and texts and their reasoning abilities over their joint space. However, most existing VG datasets are constructed using simple description texts, which do not require sufficient reasoning over the images and texts. This has been demonstrated in a recent study~\cite{luo2022goes}, where a simple LSTM-based text encoder without pretraining can achieve state-of-the-art performance on mainstream VG datasets. Therefore, in this paper, we propose a novel benchmark of \underline{S}cene \underline{K}nowledge-guided \underline{V}isual \underline{G}rounding (SK-VG), where the image content and referring expressions are not sufficient to ground the target objects, forcing the models to have a reasoning ability on the long-form scene knowledge. To perform this task, we propose two approaches to accept the triple-type input, where the former embeds knowledge into the image features before the image-query interaction; the latter leverages linguistic structure to assist in computing the image-text matching. We conduct extensive experiments to analyze the above methods and show that the proposed approaches achieve promising results but still leave room for improvement, including performance and interpretability. The dataset and code are available at \url{//github.com/zhjohnchan/SK-VG}.
Understanding relations between objects is crucial for understanding the semantics of a visual scene. It is also an essential step in order to bridge visual and language models. However, current state-of-the-art computer vision models still lack the ability to perform spatial reasoning well. Existing datasets mostly cover a relatively small number of spatial relations, all of which are static relations that do not intrinsically involve motion. In this paper, we propose the Spatial and Temporal Understanding of Prepositions Dataset (STUPD) -- a large-scale video dataset for understanding static and dynamic spatial relationships derived from prepositions of the English language. The dataset contains 150K visual depictions (videos and images), consisting of 30 distinct spatial prepositional senses, in the form of object interaction simulations generated synthetically using Unity3D. In addition to spatial relations, we also propose 50K visual depictions across 10 temporal relations, consisting of videos depicting event/time-point interactions. To our knowledge, no dataset exists that represents temporal relations through visual settings. In this dataset, we also provide 3D information about object interactions such as frame-wise coordinates, and descriptions of the objects used. The goal of this synthetic dataset is to help models perform better in visual relationship detection in real-world settings. We demonstrate an increase in the performance of various models over 2 real-world datasets (ImageNet-VidVRD and Spatial Senses) when pretrained on the STUPD dataset, in comparison to other pretraining datasets.
With recent advances in Generative AI, it is becoming easier to automatically manipulate 3D models. However, current methods tend to apply edits to models globally, which risks compromising the intended functionality of the 3D model when fabricated in the physical world. For example, modifying functional segments in 3D models, such as the base of a vase, could break the original functionality of the model, thus causing the vase to fall over. We introduce a method for automatically segmenting 3D models into functional and aesthetic elements. This method allows users to selectively modify aesthetic segments of 3D models, without affecting the functional segments. To develop this method we first create a taxonomy of functionality in 3D models by qualitatively analyzing 1000 models sourced from a popular 3D printing repository, Thingiverse. With this taxonomy, we develop a semi-automatic classification method to decompose 3D models into functional and aesthetic elements. We propose a system called Style2Fab that allows users to selectively stylize 3D models without compromising their functionality. We evaluate the effectiveness of our classification method compared to human-annotated data, and demonstrate the utility of Style2Fab with a user study to show that functionality-aware segmentation helps preserve model functionality.
Large language models (large LMs) are increasingly trained on massive codebases and used to generate code. However, LMs lack awareness of security and are found to frequently produce unsafe code. This work studies the security of LMs along two important axes: (i) security hardening, which aims to enhance LMs' reliability in generating secure code, and (ii) adversarial testing, which seeks to evaluate LMs' security at an adversarial standpoint. We address both of these by formulating a new security task called controlled code generation. The task is parametric and takes as input a binary property to guide the LM to generate secure or unsafe code, while preserving the LM's capability of generating functionally correct code. We propose a novel learning-based approach called SVEN to solve this task. SVEN leverages property-specific continuous vectors to guide program generation towards the given property, without modifying the LM's weights. Our training procedure optimizes these continuous vectors by enforcing specialized loss terms on different regions of code, using a high-quality dataset carefully curated by us. Our extensive evaluation shows that SVEN is highly effective in achieving strong security control. For instance, a state-of-the-art CodeGen LM with 2.7B parameters generates secure code for 59.1% of the time. When we employ SVEN to perform security hardening (or adversarial testing) on this LM, the ratio is significantly boosted to 92.3% (or degraded to 36.8%). Importantly, SVEN closely matches the original LMs in functional correctness.
Deep Neural Networks (DNNs) have led to unprecedented progress in various natural language processing (NLP) tasks. Owing to limited data and computation resources, using third-party data and models has become a new paradigm for adapting various tasks. However, research shows that it has some potential security vulnerabilities because attackers can manipulate the training process and data source. Such a way can set specific triggers, making the model exhibit expected behaviors that have little inferior influence on the model's performance for primitive tasks, called backdoor attacks. Hence, it could have dire consequences, especially considering that the backdoor attack surfaces are broad. To get a precise grasp and understanding of this problem, a systematic and comprehensive review is required to confront various security challenges from different phases and attack purposes. Additionally, there is a dearth of analysis and comparison of the various emerging backdoor countermeasures in this situation.In this paper, we conduct a timely review of backdoor attacks and countermeasures to sound the red alarm for the NLP security community. According to the affected stage of the machine learning pipeline, the attack surfaces are recognized to be wide and then formalized into three categorizations: attacking pre-trained model with fine-tuning (APMF) or prompt-tuning (APMP), and attacking final model with training (AFMT), where AFMT can be subdivided into different attack aims. Thus, attacks under each categorization are combed. The countermeasures are categorized into two general classes: sample inspection and model inspection. Overall, the research on the defense side is far behind the attack side, and there is no single defense that can prevent all types of backdoor attacks. An attacker can intelligently bypass existing defenses with a more invisible attack. ......
Humans throw and catch objects all the time. However, such a seemingly common skill introduces a lot of challenges for robots to achieve: The robots need to operate such dynamic actions at high-speed, collaborate precisely, and interact with diverse objects. In this paper, we design a system with two multi-finger hands attached to robot arms to solve this problem. We train our system using Multi-Agent Reinforcement Learning in simulation and perform Sim2Real transfer to deploy on the real robots. To overcome the Sim2Real gap, we provide multiple novel algorithm designs including learning a trajectory prediction model for the object. Such a model can help the robot catcher has a real-time estimation of where the object will be heading, and then react accordingly. We conduct our experiments with multiple objects in the real-world system, and show significant improvements over multiple baselines. Our project page is available at \url{//binghao-huang.github.io/dynamic_handover/}.
Blur artifacts can seriously degrade the visual quality of images, and numerous deblurring methods have been proposed for specific scenarios. However, in most real-world images, blur is caused by different factors, e.g., motion and defocus. In this paper, we address how different deblurring methods perform in the case of multiple types of blur. For in-depth performance evaluation, we construct a new large-scale multi-cause image deblurring dataset (called MC-Blur), including real-world and synthesized blurry images with mixed factors of blurs. The images in the proposed MC-Blur dataset are collected using different techniques: averaging sharp images captured by a 1000-fps high-speed camera, convolving Ultra-High-Definition (UHD) sharp images with large-size kernels, adding defocus to images, and real-world blurry images captured by various camera models. Based on the MC-Blur dataset, we conduct extensive benchmarking studies to compare SOTA methods in different scenarios, analyze their efficiency, and investigate the built dataset's capacity. These benchmarking results provide a comprehensive overview of the advantages and limitations of current deblurring methods, and reveal the advances of our dataset.
Deep learning has been the mainstream technique in natural language processing (NLP) area. However, the techniques require many labeled data and are less generalizable across domains. Meta-learning is an arising field in machine learning studying approaches to learn better learning algorithms. Approaches aim at improving algorithms in various aspects, including data efficiency and generalizability. Efficacy of approaches has been shown in many NLP tasks, but there is no systematic survey of these approaches in NLP, which hinders more researchers from joining the field. Our goal with this survey paper is to offer researchers pointers to relevant meta-learning works in NLP and attract more attention from the NLP community to drive future innovation. This paper first introduces the general concepts of meta-learning and the common approaches. Then we summarize task construction settings and application of meta-learning for various NLP problems and review the development of meta-learning in NLP community.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.