Pre-trained transformers are now the de facto models in Natural Language Processing given their state-of-the-art results in many tasks and languages. However, most of the current models have been trained on languages for which large text resources are already available (such as English, French, Arabic, etc.). Therefore, there are still a number of low-resource languages that need more attention from the community. In this paper, we study the Algerian dialect which has several specificities that make the use of Arabic or multilingual models inappropriate. To address this issue, we collected more than one million Algerian tweets, and pre-trained the first Algerian language model: DziriBERT. When compared with existing models, DziriBERT achieves better results, especially when dealing with the Roman script. The obtained results show that pre-training a dedicated model on a small dataset (150 MB) can outperform existing models that have been trained on much more data (hundreds of GB). Finally, our model is publicly available to the community.
This paper presents ViDeBERTa, a new pre-trained monolingual language model for Vietnamese, with three versions - ViDeBERTa_xsmall, ViDeBERTa_base, and ViDeBERTa_large, which are pre-trained on a large-scale corpus of high-quality and diverse Vietnamese texts using DeBERTa architecture. Although many successful pre-trained language models based on Transformer have been widely proposed for the English language, there are still few pre-trained models for Vietnamese, a low-resource language, that perform good results on downstream tasks, especially Question answering. We fine-tune and evaluate our model on three important natural language downstream tasks, Part-of-speech tagging, Named-entity recognition, and Question answering. The empirical results demonstrate that ViDeBERTa with far fewer parameters surpasses the previous state-of-the-art models on multiple Vietnamese-specific natural language understanding tasks. Notably, ViDeBERTa_base with 86M parameters, which is only about 23% of PhoBERT_large with 370M parameters, still performs the same or better results than the previous state-of-the-art model. Our ViDeBERTa models are available at: //github.com/HySonLab/ViDeBERTa.
Vision (image and video) - Language (VL) pre-training is the recent popular paradigm that achieved state-of-the-art results on multi-modal tasks like image-retrieval, video-retrieval, visual question answering etc. These models are trained in an unsupervised way and greatly benefit from the complementary modality supervision. In this paper, we explore if the language representations trained using vision supervision perform better than vanilla language representations on Natural Language Understanding and commonsense reasoning benchmarks. We experiment with a diverse set of image-text models such as ALBEF, BLIP, METER and video-text models like ALPRO, Frozen-in-Time (FiT), VIOLET. We compare the performance of language representations of stand-alone text encoders of these models to the language representations of text encoders learnt through vision supervision. Our experiments suggest that vanilla language representations show superior performance on most of the tasks. These results shed light on the current drawbacks of the vision-language models.
Accurate and comprehensive material databases extracted from research papers are critical for materials science and engineering but require significant human effort to develop. In this paper we present a simple method of extracting materials data from full texts of research papers suitable for quickly developing modest-sized databases. The method requires minimal to no coding, prior knowledge about the extracted property, or model training, and provides high recall and almost perfect precision in the resultant database. The method is fully automated except for one human-assisted step, which typically requires just a few hours of human labor. The method builds on top of natural language processing and large general language models but can work with almost any such model. The language models GPT-3/3.5, bart and DeBERTaV3 are evaluated here for comparison. We provide a detailed detailed analysis of the methods performance in extracting bulk modulus data, obtaining up to 90% precision at 96% recall, depending on the amount of human effort involved. We then demonstrate the methods broader effectiveness by developing a database of critical cooling rates for metallic glasses.
Specialised pre-trained language models are becoming more frequent in NLP since they can potentially outperform models trained on generic texts. BioBERT and BioClinicalBERT are two examples of such models that have shown promise in medical NLP tasks. Many of these models are overparametrised and resource-intensive, but thanks to techniques like Knowledge Distillation (KD), it is possible to create smaller versions that perform almost as well as their larger counterparts. In this work, we specifically focus on development of compact language models for processing clinical texts (i.e. progress notes, discharge summaries etc). We developed a number of efficient lightweight clinical transformers using knowledge distillation and continual learning, with the number of parameters ranging from 15 million to 65 million. These models performed comparably to larger models such as BioBERT and ClinicalBioBERT and significantly outperformed other compact models trained on general or biomedical data. Our extensive evaluation was done across several standard datasets and covered a wide range of clinical text-mining tasks, including Natural Language Inference, Relation Extraction, Named Entity Recognition, and Sequence Classification. To our knowledge, this is the first comprehensive study specifically focused on creating efficient and compact transformers for clinical NLP tasks. The models and code used in this study can be found on our Huggingface profile at //huggingface.co/nlpie and Github page at //github.com/nlpie-research/Lightweight-Clinical-Transformers, respectively, promoting reproducibility of our results.
Given the prevalence of 3D medical imaging technologies such as MRI and CT that are widely used in diagnosing and treating diverse diseases, 3D segmentation is one of the fundamental tasks of medical image analysis. Recently, Transformer-based models have started to achieve state-of-the-art performances across many vision tasks, through pre-training on large-scale natural image benchmark datasets. While works on medical image analysis have also begun to explore Transformer-based models, there is currently no optimal strategy to effectively leverage pre-trained Transformers, primarily due to the difference in dimensionality between 2D natural images and 3D medical images. Existing solutions either split 3D images into 2D slices and predict each slice independently, thereby losing crucial depth-wise information, or modify the Transformer architecture to support 3D inputs without leveraging pre-trained weights. In this work, we use a simple yet effective weight inflation strategy to adapt pre-trained Transformers from 2D to 3D, retaining the benefit of both transfer learning and depth information. We further investigate the effectiveness of transfer from different pre-training sources and objectives. Our approach achieves state-of-the-art performances across a broad range of 3D medical image datasets, and can become a standard strategy easily utilized by all work on Transformer-based models for 3D medical images, to maximize performance.
Auto-regressive large language models such as GPT-3 require enormous computational resources to use. Traditionally, structured pruning methods are employed to reduce resource usage. However, their application to and efficacy for generative language models is heavily under-explored. In this paper we conduct an comprehensive evaluation of common structured pruning methods, including magnitude, random, and movement pruning on the feed-forward layers in GPT-type models. Unexpectedly, random pruning results in performance that is comparable to the best established methods, across multiple natural language generation tasks. To understand these results, we provide a framework for measuring neuron-level redundancy of models pruned by different methods, and discover that established structured pruning methods do not take into account the distinctiveness of neurons, leaving behind excess redundancies. In view of this, we introduce Globally Unique Movement (GUM) to improve the uniqueness of neurons in pruned models. We then discuss the effects of our techniques on different redundancy metrics to explain the improved performance.
Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.
The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF--better few-shot fine-tuning of language models--a suite of simple and complementary techniques for fine-tuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning.
Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive and memory intensive, so it is difficult to effectively execute them on some resource-restricted devices. To accelerate inference and reduce model size while maintaining accuracy, we firstly propose a novel transformer distillation method that is a specially designed knowledge distillation (KD) method for transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large teacher BERT can be well transferred to a small student TinyBERT. Moreover, we introduce a new two-stage learning framework for TinyBERT, which performs transformer distillation at both the pre-training and task-specific learning stages. This framework ensures that TinyBERT can capture both the general-domain and task-specific knowledge of the teacher BERT. TinyBERT is empirically effective and achieves comparable results with BERT in GLUE datasets, while being 7.5x smaller and 9.4x faster on inference. TinyBERT is also significantly better than state-of-the-art baselines, even with only about 28% parameters and 31% inference time of baselines.
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.