Automated bidding, an emerging intelligent decision making paradigm powered by machine learning, has become popular in online advertising. Advertisers in automated bidding evaluate the cumulative utilities and have private financial constraints over multiple ad auctions in a long-term period. Based on these distinct features, we consider a new ad auction model for automated bidding: the values of advertisers are public while the financial constraints, such as budget and return on investment (ROI) rate, are private types. We derive the truthfulness conditions with respect to private constraints for this multi-dimensional setting, and demonstrate any feasible allocation rule could be equivalently reduced to a series of non-decreasing functions on budget. However, the resulted allocation mapped from these non-decreasing functions generally follows an irregular shape, making it difficult to obtain a closed-form expression for the auction objective. To overcome this design difficulty, we propose a family of truthful automated bidding auction with personalized rank scores, similar to the Generalized Second-Price (GSP) auction. The intuition behind our design is to leverage personalized rank scores as the criteria to allocate items, and compute a critical ROI to transform the constraints on budget to the same dimension as ROI. The experimental results demonstrate that the proposed auction mechanism outperforms the widely used ad auctions, such as first-price auction and second-price auction, in various automated bidding environments.
We present a study on a repeated delegated choice problem, which is the first to consider an online learning variant of Kleinberg and Kleinberg, EC'18. In this model, a principal interacts repeatedly with an agent who possesses an exogenous set of solutions to search for efficient ones. Each solution can yield varying utility for both the principal and the agent, and the agent may propose a solution to maximize its own utility in a selfish manner. To mitigate this behavior, the principal announces an eligible set which screens out a certain set of solutions. The principal, however, does not have any information on the distribution of solutions in advance. Therefore, the principal dynamically announces various eligible sets to efficiently learn the distribution. The principal's objective is to minimize cumulative regret compared to the optimal eligible set in hindsight. We explore two dimensions of the problem setup, whether the agent behaves myopically or strategizes across the rounds, and whether the solutions yield deterministic or stochastic utility. Our analysis mainly characterizes some regimes under which the principal can recover the sublinear regret, thereby shedding light on the rise and fall of the repeated delegation procedure in various regimes.
Many scientific questions in biomedical, environmental, and psychological research involve understanding the impact of multiple factors on outcomes. While randomized factorial experiments are ideal for this purpose, randomization is infeasible in many empirical studies. Therefore, investigators often rely on observational data, where drawing reliable causal inferences for multiple factors remains challenging. As the number of treatment combinations grows exponentially with the number of factors, some treatment combinations can be rare or even missing by chance in observed data, further complicating factorial effects estimation. To address these challenges, we propose a novel weighting method tailored to observational studies with multiple factors. Our approach uses weighted observational data to emulate a randomized factorial experiment, enabling simultaneous estimation of the effects of multiple factors and their interactions. Our investigations reveal a crucial nuance: achieving balance among covariates, as in single-factor scenarios, is necessary but insufficient for unbiasedly estimating factorial effects. Our findings suggest that balancing the factors is also essential in multi-factor settings. Moreover, we extend our weighting method to handle missing treatment combinations in observed data. Finally, we study the asymptotic behavior of the new weighting estimators and propose a consistent variance estimator, providing reliable inferences on factorial effects in observational studies.
Learning state representations has gained steady popularity in reinforcement learning (RL) due to its potential to improve both sample efficiency and returns on many environments. A straightforward and efficient method is to generate representations with a distinct neural network trained on an auxiliary task, i.e. a task that differs from the actual RL task. While a whole range of such auxiliary tasks has been proposed in the literature, a comparison on typical continuous control benchmark environments is computationally expensive and has, to the best of our knowledge, not been performed before. This paper presents such a comparison of common auxiliary tasks, based on hundreds of agents trained with state-of-the-art off-policy RL algorithms. We compare possible improvements in both sample efficiency and returns for environments ranging from simple pendulum to a complex simulated robotics task. Our findings show that representation learning with auxiliary tasks is beneficial for environments of higher dimension and complexity, and that learning environment dynamics is preferable to predicting rewards. We believe these insights will enable other researchers to make more informed decisions on how to utilize representation learning for their specific problem.
The application of self-supervision to speech representation learning has garnered significant interest in recent years, due to its scalability to large amounts of unlabeled data. However, much progress, both in terms of pre-training and downstream evaluation, has remained concentrated in monolingual models that only consider English. Few models consider other languages, and even fewer consider indigenous ones. In our submission to the New Language Track of the ASRU 2023 ML-SUPERB Challenge, we present an ASR corpus for Quechua, an indigenous South American Language. We benchmark the efficacy of large SSL models on Quechua, along with 6 other indigenous languages such as Guarani and Bribri, on low-resource ASR. Our results show surprisingly strong performance by state-of-the-art SSL models, showing the potential generalizability of large-scale models to real-world data.
Privacy and Byzantine resilience (BR) are two crucial requirements of modern-day distributed machine learning. The two concepts have been extensively studied individually but the question of how to combine them effectively remains unanswered. This paper contributes to addressing this question by studying the extent to which the distributed SGD algorithm, in the standard parameter-server architecture, can learn an accurate model despite (a) a fraction of the workers being malicious (Byzantine), and (b) the other fraction, whilst being honest, providing noisy information to the server to ensure differential privacy (DP). We first observe that the integration of standard practices in DP and BR is not straightforward. In fact, we show that many existing results on the convergence of distributed SGD under Byzantine faults, especially those relying on $(\alpha,f)$-Byzantine resilience, are rendered invalid when honest workers enforce DP. To circumvent this shortcoming, we revisit the theory of $(\alpha,f)$-BR to obtain an approximate convergence guarantee. Our analysis provides key insights on how to improve this guarantee through hyperparameter optimization. Essentially, our theoretical and empirical results show that (1) an imprudent combination of standard approaches to DP and BR might be fruitless, but (2) by carefully re-tuning the learning algorithm, we can obtain reasonable learning accuracy while simultaneously guaranteeing DP and BR.
Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.