We introduce ensembles within score-based sampling methods to develop gradient-free approximate sampling techniques that leverage the collective dynamics of particle ensembles to compute approximate reverse diffusion drifts. We introduce the underlying methodology, emphasizing its relationship with generative diffusion models and the previously introduced F\"ollmer sampler. We demonstrate the efficacy of ensemble strategies through various examples, ranging from low- to medium-dimensionality sampling problems, including multi-modal and highly non-Gaussian probability distributions, and provide comparisons to traditional methods like NUTS. Our findings highlight the potential of ensemble strategies for modeling complex probability distributions in situations where gradients are unavailable. Finally, we showcase its application in the context of Bayesian inversion problems within the geophysical sciences.
The sequence reconstruction problem, introduced by Levenshtein in 2001, considers a scenario where the sender transmits a codeword from some codebook, and the receiver obtains $N$ noisy outputs of the codeword. We study the problem of efficient reconstruction using $N$ outputs that are each corrupted by at most $t$ substitutions. Specifically, for the ubiquitous Reed-Solomon codes, we adapt the Koetter-Vardy soft-decoding algorithm, presenting a reconstruction algorithm capable of correcting beyond Johnson radius. Furthermore, the algorithm uses $\mathcal{O}(nN)$ field operations, where $n$ is the codeword length.
Image super-resolution (SR) methods typically model degradation to improve reconstruction accuracy in complex and unknown degradation scenarios. However, extracting degradation information from low-resolution images is challenging, which limits the model performance. To boost image SR performance, one feasible approach is to introduce additional priors. Inspired by advancements in multi-modal methods and text prompt image processing, we introduce text prompts to image SR to provide degradation priors. Specifically, we first design a text-image generation pipeline to integrate text into the SR dataset through the text degradation representation and degradation model. The text representation applies a discretization manner based on the binning method to describe the degradation abstractly. This method maintains the flexibility of the text and is user-friendly. Meanwhile, we propose the PromptSR to realize the text prompt SR. The PromptSR utilizes the pre-trained language model (e.g., T5 or CLIP) to enhance restoration. We train the model on the generated text-image dataset. Extensive experiments indicate that introducing text prompts into SR, yields excellent results on both synthetic and real-world images. Code is available at: //github.com/zhengchen1999/PromptSR.
The use of generative AI to create text descriptions from graphs has mostly focused on knowledge graphs, which connect concepts using facts. In this work we explore the capability of large pretrained language models to generate text from causal graphs, where salient concepts are represented as nodes and causality is represented via directed, typed edges. The causal reasoning encoded in these graphs can support applications as diverse as healthcare or marketing. Using two publicly available causal graph datasets, we empirically investigate the performance of four GPT-3 models under various settings. Our results indicate that while causal text descriptions improve with training data, compared to fact-based graphs, they are harder to generate under zero-shot settings. Results further suggest that users of generative AI can deploy future applications faster since similar performances are obtained when training a model with only a few examples as compared to fine-tuning via a large curated dataset.
Knowledge graph embeddings (KGEs) were originally developed to infer true but missing facts in incomplete knowledge repositories. In this paper, we link knowledge graph completion and counterfactual reasoning via our new task CFKGR. We model the original world state as a knowledge graph, hypothetical scenarios as edges added to the graph, and plausible changes to the graph as inferences from logical rules. We create corresponding benchmark datasets, which contain diverse hypothetical scenarios with plausible changes to the original knowledge graph and facts that should be retained. We develop COULDD, a general method for adapting existing knowledge graph embeddings given a hypothetical premise, and evaluate it on our benchmark. Our results indicate that KGEs learn patterns in the graph without explicit training. We further observe that KGEs adapted with COULDD solidly detect plausible counterfactual changes to the graph that follow these patterns. An evaluation on human-annotated data reveals that KGEs adapted with COULDD are mostly unable to recognize changes to the graph that do not follow learned inference rules. In contrast, ChatGPT mostly outperforms KGEs in detecting plausible changes to the graph but has poor knowledge retention. In summary, CFKGR connects two previously distinct areas, namely KG completion and counterfactual reasoning.
Dataset distillation (DD) has emerged as a widely adopted technique for crafting a synthetic dataset that captures the essential information of a training dataset, facilitating the training of accurate neural models. Its applications span various domains, including transfer learning, federated learning, and neural architecture search. The most popular methods for constructing the synthetic data rely on matching the convergence properties of training the model with the synthetic dataset and the training dataset. However, targeting the training dataset must be thought of as auxiliary in the same sense that the training set is an approximate substitute for the population distribution, and the latter is the data of interest. Yet despite its popularity, an aspect that remains unexplored is the relationship of DD to its generalization, particularly across uncommon subgroups. That is, how can we ensure that a model trained on the synthetic dataset performs well when faced with samples from regions with low population density? Here, the representativeness and coverage of the dataset become salient over the guaranteed training error at inference. Drawing inspiration from distributionally robust optimization, we introduce an algorithm that combines clustering with the minimization of a risk measure on the loss to conduct DD. We provide a theoretical rationale for our approach and demonstrate its effective generalization and robustness across subgroups through numerical experiments. The source code is available in //github.com/Mming11/RobustDatasetDistillation.
Developing high-performance, real-time architectures for LiDAR-based 3D object detectors is essential for the successful commercialization of autonomous vehicles. Pillar-based methods stand out as a practical choice for onboard deployment due to their computational efficiency. However, despite their efficiency, these methods can sometimes underperform compared to alternative point encoding techniques such as Voxel-encoding or PointNet++. We argue that current pillar-based methods have not sufficiently captured the fine-grained distributions of LiDAR points within each pillar structure. Consequently, there exists considerable room for improvement in pillar feature encoding. In this paper, we introduce a novel pillar encoding architecture referred to as Fine-Grained Pillar Feature Encoding (FG-PFE). FG-PFE utilizes Spatio-Temporal Virtual (STV) grids to capture the distribution of point clouds within each pillar across vertical, temporal, and horizontal dimensions. Through STV grids, points within each pillar are individually encoded using Vertical PFE (V-PFE), Temporal PFE (T-PFE), and Horizontal PFE (H-PFE). These encoded features are then aggregated through an Attentive Pillar Aggregation method. Our experiments conducted on the nuScenes dataset demonstrate that FG-PFE achieves significant performance improvements over baseline models such as PointPillar, CenterPoint-Pillar, and PillarNet, with only a minor increase in computational overhead.
We introduce the Approximated Optimal Transport (AOT) technique, a novel training scheme for diffusion-based generative models. Our approach aims to approximate and integrate optimal transport into the training process, significantly enhancing the ability of diffusion models to estimate the denoiser outputs accurately. This improvement leads to ODE trajectories of diffusion models with lower curvature and reduced truncation errors during sampling. We achieve superior image quality and reduced sampling steps by employing AOT in training. Specifically, we achieve FID scores of 1.88 with just 27 NFEs and 1.73 with 29 NFEs in unconditional and conditional generations, respectively. Furthermore, when applying AOT to train the discriminator for guidance, we establish new state-of-the-art FID scores of 1.68 and 1.58 for unconditional and conditional generations, respectively, each with 29 NFEs. This outcome demonstrates the effectiveness of AOT in enhancing the performance of diffusion models.
A novel near-field transmission framework is proposed for dynamic metasurface antenna (DMA)-enabled non-orthogonal multiple access (NOMA) networks. The base station (BS) exploits the hybrid beamforming to communicate with multiple near users (NUs) and far users (FUs) using the NOMA principle. Based on this framework, two novel beamforming schemes are proposed. 1) For the case of the grouped users distributed in the same direction, a beam-steering scheme is developed. The metric of beam pattern error (BPE) is introduced for the characterization of the gap between the hybrid beamformers and the desired ideal beamformers, where a two-layer algorithm is proposed to minimize BPE by optimizing hybrid beamformers. Then, the optimal power allocation strategy is obtained to maximize the sum achievable rate of the network. 2) For the case of users randomly distributed, a beam-splitting scheme is proposed, where two sub-beamformers are extracted from the single beamformer to serve different users in the same group. An alternating optimization (AO) algorithm is proposed for hybrid beamformer optimization, and the optimal power allocation is also derived. Numerical results validate that: 1) the proposed beamforming schemes exhibit superior performance compared with the existing imperfect-resolution-based beamforming scheme; 2) the communication rate of the proposed transmission framework is sensitive to the imperfect distance knowledge of NUs but not to that of FUs.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.