The way organs are positioned and moved in the workplace can cause pain and physical harm. Therefore, ergonomists use ergonomic risk assessments based on visual observation of the workplace, or review pictures and videos taken in the workplace. Sometimes the workers in the photos are not in perfect condition. Some parts of the workers' bodies may not be in the camera's field of view, could be obscured by objects, or by self-occlusion, this is the main problem in 2D human posture recognition. It is difficult to predict the position of body parts when they are not visible in the image, and geometric mathematical methods are not entirely suitable for this purpose. Therefore, we created a dataset with artificial images of a 3D human model, specifically for painful postures, and real human photos from different viewpoints. Each image we captured was based on a predefined joint angle for each 3D model or human model. We created various images, including images where some body parts are not visible. Nevertheless, the joint angle is estimated beforehand, so we could study the case by converting the input images into the sequence of joint connections between predefined body parts and extracting the desired joint angle with a convolutional neural network. In the end, we obtained root mean square error (RMSE) of 12.89 and mean absolute error (MAE) of 4.7 on the test dataset.
We propose a way to maintain strong consistency and facilitate error analysis in the context of dissipation-based WENO stabilization for continuous and discontinuous Galerkin discretizations of conservation laws. Following Kuzmin and Vedral (J. Comput. Phys. 487:112153, 2023) and Vedral (arXiv preprint arXiv:2309.12019), we use WENO shock detectors to determine appropriate amounts of low-order artificial viscosity. In contrast to existing WENO methods, our approach blends candidate polynomials using residual-based nonlinear weights. The shock-capturing terms of our stabilized Galerkin methods vanish if residuals do. This enables us to achieve improved accuracy compared to weakly consistent alternatives. As we show in the context of steady convection-diffusion-reaction (CDR) equations, nonlinear local projection stabilization terms can be included in a way that preserves the coercivity of local bilinear forms. For the corresponding Galerkin-WENO discretization of a CDR problem, we rigorously derive a priori error estimates. Additionally, we demonstrate the stability and accuracy of the proposed method through one- and two-dimensional numerical experiments for hyperbolic conservation laws and systems thereof. The numerical results for representative test problems are superior to those obtained with traditional WENO schemes, particularly in scenarios involving shocks and steep gradients.
Multi-scale problems, where variables of interest evolve in different time-scales and live in different state-spaces, can be found in many fields of science. Here, we introduce a new recursive methodology for Bayesian inference that aims at estimating the static parameters and tracking the dynamic variables of these kind of systems. Although the proposed approach works in rather general multi-scale systems, for clarity we analyze the case of a heterogeneous multi-scale model with 3 time-scales (static parameters, slow dynamic state variables and fast dynamic state variables). The proposed scheme, based on nested filtering methodology of P\'erez-Vieites et al. (2018), combines three intertwined layers of filtering techniques that approximate recursively the joint posterior probability distribution of the parameters and both sets of dynamic state variables given a sequence of partial and noisy observations. We explore the use of sequential Monte Carlo schemes in the first and second layers while we use an unscented Kalman filter to obtain a Gaussian approximation of the posterior probability distribution of the fast variables in the third layer. Some numerical results are presented for a stochastic two-scale Lorenz 96 model with unknown parameters.
This work aims to extend the well-known high-order WENO finite-difference methods for systems of conservation laws to nonconservative hyperbolic systems. The main difficulty of these systems both from the theoretical and the numerical points of view comes from the fact that the definition of weak solution is not unique: according to the theory developed by Dal Maso, LeFloch, and Murat in 1995, it depends on the choice of a family of paths. A general strategy is proposed here in which WENO operators are not only used to reconstruct fluxes but also the nonconservative products of the system. Moreover, if a Roe linearization is available, the nonconservative products can be computed through matrix-vector operations instead of path-integrals. The methods are extended to problems with source terms and two different strategies are introduced to obtain well-balanced schemes. These numerical schemes will be then applied to the two-layer shallow water equations in one- and two- dimensions to obtain high-order methods that preserve water-at-rest steady states.
We propose an extremely versatile approach to address a large family of matrix nearness problems, possibly with additional linear constraints. Our method is based on splitting a matrix nearness problem into two nested optimization problems, of which the inner one can be solved either exactly or cheaply, while the outer one can be recast as an unconstrained optimization task over a smooth real Riemannian manifold. We observe that this paradigm applies to many matrix nearness problems of practical interest appearing in the literature, thus revealing that they are equivalent in this sense to a Riemannian optimization problem. We also show that the objective function to be minimized on the Riemannian manifold can be discontinuous, thus requiring regularization techniques, and we give conditions for this to happen. Finally, we demonstrate the practical applicability of our method by implementing it for a number of matrix nearness problems that are relevant for applications and are currently considered very demanding in practice. Extensive numerical experiments demonstrate that our method often greatly outperforms its predecessors, including algorithms specifically designed for those particular problems.
Highly resolved finite element simulations of a laser beam welding process are considered. The thermomechanical behavior of this process is modeled with a set of thermoelasticity equations resulting in a nonlinear, nonsymmetric saddle point system. Newton's method is used to solve the nonlinearity and suitable domain decomposition preconditioners are applied to accelerate the convergence of the iterative method used to solve all linearized systems. Since a onelevel Schwarz preconditioner is in general not scalable, a second level has to be added. Therefore, the construction and numerical analysis of a monolithic, twolevel overlapping Schwarz approach with the GDSW (Generalized Dryja-Smith-Widlund) coarse space and an economic variant thereof are presented here.
Flexoelectricity - the generation of electric field in response to a strain gradient - is a universal electromechanical coupling, dominant only at small scales due to its requirement of high strain gradients. This phenomenon is governed by a set of coupled fourth-order partial differential equations (PDEs), which require $C^1$ continuity of the basis in finite element methods for the numerical solution. While Isogeometric analysis (IGA) has been proven to meet this continuity requirement due to its higher-order B-spline basis functions, it is limited to simple geometries that can be discretized with a single IGA patch. For the domains, e.g., architected materials, requiring more than one patch for discretization IGA faces the challenge of $C^0$ continuity across the patch boundaries. Here we present a discontinuous Galerkin method-based isogeometric analysis framework, capable of solving fourth-order PDEs of flexoelectricity in the domain of truss-based architected materials. An interior penalty-based stabilization is implemented to ensure the stability of the solution. The present formulation is advantageous over the analogous finite element methods since it only requires the computation of interior boundary contributions on the boundaries of patches. As each strut can be modeled with only two trapezoid patches, the number of $C^0$ continuous boundaries is largely reduced. Further, we consider four unique unit cells to construct the truss lattices and analyze their flexoelectric response. The truss lattices show a higher magnitude of flexoelectricity compared to the solid beam, as well as retain this superior electromechanical response with the increasing size of the structure. These results indicate the potential of architected materials to scale up the flexoelectricity to larger scales, towards achieving universal electromechanical response in meso/macro scale dielectric materials.
Many environmental processes such as rainfall, wind or snowfall are inherently spatial and the modelling of extremes has to take into account that feature. In addition, environmental processes are often attached with an angle, e.g., wind speed and direction or extreme snowfall and time of occurrence in year. This article proposes a Bayesian hierarchical model with a conditional independence assumption that aims at modelling simultaneously spatial extremes and an angular component. The proposed model relies on the extreme value theory as well as recent developments for handling directional statistics over a continuous domain. Working within a Bayesian setting, a Gibbs sampler is introduced whose performances are analysed through a simulation study. The paper ends with an application on extreme wind speed in France. Results show that extreme wind events in France are mainly coming from West apart from the Mediterranean part of France and the Alps.
Efficiently enumerating all the extreme points of a polytope identified by a system of linear inequalities is a well-known challenge issue.We consider a special case and present an algorithm that enumerates all the extreme points of a bisubmodular polyhedron in $\mathcal{O}(n^4|V|)$ time and $\mathcal{O}(n^2)$ space complexity, where $ n$ is the dimension of underlying space and $V$ is the set of outputs. We use the reverse search and signed poset linked to extreme points to avoid the redundant search. Our algorithm is a generalization of enumerating all the extreme points of a base polyhedron which comprises some combinatorial enumeration problems.
We propose a new full discretization of the Biot's equations in poroelasticity. The construction is driven by the inf-sup theory, which we recently developed. It builds upon the four-field formulation of the equations obtained by introducing the total pressure and the total fluid content. We discretize in space with Lagrange finite elements and in time with backward Euler. We establish inf-sup stability and quasi-optimality of the proposed discretization, with robust constants with respect to all material parameters. We further construct an interpolant showing how the error decays for smooth solutions.
Threshold selection is a fundamental problem in any threshold-based extreme value analysis. While models are asymptotically motivated, selecting an appropriate threshold for finite samples is difficult and highly subjective through standard methods. Inference for high quantiles can also be highly sensitive to the choice of threshold. Too low a threshold choice leads to bias in the fit of the extreme value model, while too high a choice leads to unnecessary additional uncertainty in the estimation of model parameters. We develop a novel methodology for automated threshold selection that directly tackles this bias-variance trade-off. We also develop a method to account for the uncertainty in the threshold estimation and propagate this uncertainty through to high quantile inference. Through a simulation study, we demonstrate the effectiveness of our method for threshold selection and subsequent extreme quantile estimation, relative to the leading existing methods, and show how the method's effectiveness is not sensitive to the tuning parameters. We apply our method to the well-known, troublesome example of the River Nidd dataset.